摘要翻译:
提出了一种在丰度估计过程中综合空间信息的半监督高光谱解混方案。将该方法应用于一个基于多项式后非线性混合模型的非线性模型,该模型由纯光谱特征加上噪声的非线性函数构成的像素反射特征。我们将图像划分为包含相似材料的类,因此共享相同的丰度向量。利用马尔可夫随机场对属于每一类的像素之间的空间相关性进行建模。提出了一个贝叶斯框架来交替估计类和相应的丰度向量。我们提出了稀疏Dirichlet先验的丰度向量,使得该算法可以应用于半监督场景中,其中所涉及的材料是未知的。在这种方法中,我们只需要有一个大的纯光谱特征库,包括所需的材料。一种MCMC算法用于估计基于生成样本的丰度向量。仿真数据的实现结果表明了该方法的优越性。
---
英文标题:
《Using Spatial Correlation in Semi-Supervised Hyperspectral Unmixing
under Polynomial Post-nonlinear Mixing Model》
---
作者:
Fahime Amiri, Mohammad Hossein. Kahaei
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
This paper presents a semi-supervised hyperspectral unmixing solution that integrate the spatial information in the abundance estimation procedure. The proposed method is applied on a nonlinear model based on polynomial postnonlinear mixing model where characterizes each pixel reflections composed of nonlinear function of pure spectral signatures added by noise. We partitioned the image to classes where contains similar materials so share the same abundance vector. The spatial correlation between pixels belonging to each class is modelled by Markov Random Field. A Bayesian framework is proposed to estimate the classes and corresponding abundance vectors alternatively. We proposed sparse Dirichlet prior for abundance vector that made it possible to use this algorithm in semi-supervised scenario where the exact involved materials are unknown. In this approach, we just need to have a large library of pure spectral signatures including the desired materials. An MCMC algorithm is used to estimate the abundance vector based on generated samples. The result of implementation on simulated data shows the prominence of proposed approach.
---
PDF链接:
https://arxiv.org/pdf/1803.00873


雷达卡



京公网安备 11010802022788号







