楼主: mingdashike22
520 0

[经济学] 近视眼均衡、跨越性与子博弈束 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
74.0616
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-21 08:45:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
对于流形的紧致子集$W$上的集值函数$F$来说,跨越是一种拓扑性质,它意味着$F(x)\ne0$对于$W$的内点$x$。短视均衡适用于每个行动都有一个收益,其泛函值在策略空间中不一定是仿射的。我们证明了如果收益满足跨越性,那么存在一个短视均衡(尽管不一定是纳什均衡)。此外,给定一个参数化的博弈集合及其对该集合中收益结构的跨越性,所得的近视均衡及其收益对该参数化具有跨越性。这是Kohberg-Mertens结构定理的一个深远的推广。至少有四种有用的应用:当收益外生于有限博弈树(例如,有限重复博弈后接无限重复博弈)时,当人们希望完全用行为策略从策略上理解博弈时,当人们希望将子博弈概念扩展到共同已知的博弈树的子集时,以及对于进化博弈理论来说。这些证明涉及到新的拓扑结果,即通过对集值函数的相关运算来保持跨越性。
---
英文标题:
《Myopic equilibria, the spanning property, and subgame bundles》
---
作者:
Robert Simon, Stanislaw Spiez, Henryk Torunczyk
---
最新提交年份:
2020
---
分类信息:

一级分类:Economics        经济学
二级分类:Theoretical Economics        理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
一级分类:Mathematics        数学
二级分类:Algebraic Topology        代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--

---
英文摘要:
  For a set-valued function $F$ on a compact subset $W$ of a manifold, spanning is a topological property that implies that $F(x) \ne 0$ for interior points $x$ of $W$. A myopic equilibrium applies when for each action there is a payoff whose functional value is not necessarily affine in the strategy space. We show that if the payoffs satisfy the spanning property, then there exist a myopic equilibrium (though not necessarily a Nash equilibrium). Furthermore, given a parametrized collection of games and the spanning property to the structure of payoffs in that collection, the resulting myopic equilibria and their payoffs have the spanning property with respect to that parametrization. This is a far reaching extension of the Kohberg-Mertens Structure Theorem. There are at least four useful applications, when payoffs are exogenous to a finite game tree (for example a finitely repeated game followed by an infinitely repeated game), when one wants to understand a game strategically entirely with behaviour strategies, when one wants to extends the subgame concept to subsets of a game tree that are known in common, and for evolutionary game theory. The proofs involve new topological results asserting that spanning is preserved by relevant operations on set-valued functions.
---
PDF链接:
https://arxiv.org/pdf/2007.12876
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:近视眼 子博弈 Evolutionary Contribution Applications game 策略 性质 函数 topological

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-17 23:19