摘要翻译:
由于描述真实世界网络的数据越来越多,表现出动态特征,我们提出了指数随机图模型(ERGMs)的扩展,以适应其参数的时间变化。受快速增长的动态条件分数驱动模型文献的启发,每个参数按照ERGM分布的分数驱动的更新规则演化。我们展示了分数驱动ERGMs(SD-ERGMs)作为数据生成过程和过滤器的灵活性,并展示了动态版本相对于静态版本的优势。我们讨论了金融和政治系统对时变网络的两个应用。首先,我们考虑对意大利银行间信贷网络未来链接的预测。其次,我们证明了SD-ERGM可以区分静态参数和时变参数,当用于建模美国国会共同投票网络的动力学时。
---
英文标题:
《Score-Driven Exponential Random Graphs: A New Class of Time-Varying
Parameter Models for Dynamical Networks》
---
作者:
Domenico Di Gangi, Giacomo Bormetti, Fabrizio Lillo
---
最新提交年份:
2021
---
分类信息:
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Economics 经济学
二级分类:General Economics 一般经济学
分类描述:General methodological, applied, and empirical contributions to economics.
对经济学的一般方法、应用和经验贡献。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
英文摘要:
Motivated by the increasing abundance of data describing real-world networks that exhibit dynamical features, we propose an extension of the Exponential RandomGraph Models (ERGMs) that accommodates the time variation of its parameters. Inspired by the fast growing literature on Dynamic Conditional Score-driven models each parameter evolves according to an updating rule driven by the score of the ERGM distribution. We demonstrate the flexibility of the score-driven ERGMs (SD-ERGMs), both as data generating processes and as filters, and we show the advantages of the dynamic version with respect to the static one. We discuss two applications to time-varying networks from financial and political systems. First, we consider the prediction of future links in the Italian inter-bank credit network. Second, we show that the SD-ERGM allows to discriminate between static or time-varying parameters when used to model the dynamics of the US congress co-voting network.
---
PDF链接:
https://arxiv.org/pdf/1905.10806