摘要翻译:
Seshadri常数表示射影簇上线丛的局部正性。他们是由德迈利介绍的。用它们来证明Fujita猜想的最初想法失败了,但它们很快就成为了一个密集研究的主题,完全是它们自己的权利。Lazarsfeld的书“代数几何中的正性”包含了一整章专门讨论局部正性,并作为Seshadri常数的非常愉快的介绍。自从这本书问世以来,这个主题经历了相当多的发展。这些说明的目的是说明最近的进展,讨论许多悬而未决的问题,并提供一些例子。
---
英文标题:
《A primer on Seshadri constants》
---
作者:
Thomas Bauer, Sandra Di Rocco, Brian Harbourne, Michal Kapustka,
Andreas Leopold Knutsen, Wioletta Syzdek, Tomasz Szemberg
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Seshadri constants express the so called local positivity of a line bundle on a projective variety. They were introduced by Demailly. The original idea of using them towards a proof of the Fujita conjecture failed but they quickly became a subject of intensive study quite in their own right. Lazarsfeld's book "Positivity in Algebraic Geometry" contains a whole chapter devoted to local positivity and serves as a very enjoyable introduction to Seshadri constants. Since this book has appeared, the subject witnessed quite a bit of development. It is the aim of these notes to give an account of recent progress as well as to discuss many open questions and provide some examples.
---
PDF链接:
https://arxiv.org/pdf/0810.0728


雷达卡



京公网安备 11010802022788号







