摘要翻译:
本文提出了一种新的非中心复高斯二次型(CGQFs)的统计表征方法。其关键策略是生成一个在分布上收敛于原始CGQF的辅助随机变量(RV)。由于两者之间的均方误差是以一个简单的封闭形式给出的,因此辅助RV可以被具体化以达到所需的精度。该方法对确定性和不确定性CGQFs都有效,得到了只涉及初等函数的概率密度函数(PDF)和累积分布函数(CDF)的简单表达式。这克服了以前方法的一个主要限制,其中产生的PDF和CDF的复杂性阻止了在后续计算中使用它们。为了说明这一点,将该方法应用于相关Rician信道上的最大比合并系统,得到了系统的中断概率和平均误码率。
---
英文标题:
《A New Approach to the Statistical Analysis of Non-Central Complex
Gaussian Quadratic Forms with Applications》
---
作者:
Pablo Ram\'irez-Espinosa, Laureano Moreno-Pozas, Jos\'e F. Paris,
Jos\'e A. Cort\'es and Eduardo Martos-Naya
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
This paper proposes a novel approach to the statistical characterization of non-central complex Gaussian quadratic forms (CGQFs). Its key strategy is the generation of an auxiliary random variable (RV) that converges in distribution to the original CGQF. Since the mean squared error between both is given in a simple closed-form formulation, the auxiliary RV can be particularized to achieve the required accuracy. The technique is valid for both definite and indefinite CGQFs and yields simple expressions of the probability density function (PDF) and the cumulative distribution function (CDF) that involve only elementary functions. This overcomes a major limitation of previous approaches, in which the complexity of the resulting PDF and CDF prevents from using them for subsequent calculations. To illustrate this end, the proposed method is applied to maximal ratio combining systems over correlated Rician channels, for which the outage probability and the average bit error rate are derived.
---
PDF链接:
https://arxiv.org/pdf/1805.09181


雷达卡



京公网安备 11010802022788号







