摘要翻译:
本文试图研究模糊逻辑和确定性贝叶斯网络之间的权衡,并提出将它们各自的优点结合到模糊确定性贝叶斯网络(FCBN),即模糊随机变量的确定性贝叶斯网络。本文讨论了不确定性的不同定义和分类,不确定性的来源,以及处理不确定性的理论和方法。对模糊变量进行明确的确定性程度的模糊化,可以提高网络的质量,并带来网络性能的平滑性和鲁棒性。目的是结合贝叶斯网络、确定性分布和模糊逻辑三种方法,为不确定性环境下的决策提供一种新的方法。在本文提出的框架内,我们解决了将确定性网络扩展为模糊确定性网络的问题,以解决现有决策模型在不精确和不确定知识下的模糊性和局限性。
---
英文标题:
《Certain Bayesian Network based on Fuzzy knowledge Bases》
---
作者:
Abdelkader Heni, Mohamed Nazih Omri and Adel Alimi
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
In this paper, we are trying to examine trade offs between fuzzy logic and certain Bayesian networks and we propose to combine their respective advantages into fuzzy certain Bayesian networks (FCBN), a certain Bayesian networks of fuzzy random variables. This paper deals with different definitions and classifications of uncertainty, sources of uncertainty, and theories and methodologies presented to deal with uncertainty. Fuzzification of crisp certainty degrees to fuzzy variables improves the quality of the network and tends to bring smoothness and robustness in the network performance. The aim is to provide a new approach for decision under uncertainty that combines three methodologies: Bayesian networks certainty distribution and fuzzy logic. Within the framework proposed in this paper, we address the issue of extending the certain networks to a fuzzy certain networks in order to cope with a vagueness and limitations of existing models for decision under imprecise and uncertain knowledge.
---
PDF链接:
https://arxiv.org/pdf/1206.1319


雷达卡



京公网安备 11010802022788号







