楼主: mingdashike22
265 0

[计算机科学] 基于模糊知识库的贝叶斯网络 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
73.8816
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-28 18:45:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文试图研究模糊逻辑和确定性贝叶斯网络之间的权衡,并提出将它们各自的优点结合到模糊确定性贝叶斯网络(FCBN),即模糊随机变量的确定性贝叶斯网络。本文讨论了不确定性的不同定义和分类,不确定性的来源,以及处理不确定性的理论和方法。对模糊变量进行明确的确定性程度的模糊化,可以提高网络的质量,并带来网络性能的平滑性和鲁棒性。目的是结合贝叶斯网络、确定性分布和模糊逻辑三种方法,为不确定性环境下的决策提供一种新的方法。在本文提出的框架内,我们解决了将确定性网络扩展为模糊确定性网络的问题,以解决现有决策模型在不精确和不确定知识下的模糊性和局限性。
---
英文标题:
《Certain Bayesian Network based on Fuzzy knowledge Bases》
---
作者:
Abdelkader Heni, Mohamed Nazih Omri and Adel Alimi
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  In this paper, we are trying to examine trade offs between fuzzy logic and certain Bayesian networks and we propose to combine their respective advantages into fuzzy certain Bayesian networks (FCBN), a certain Bayesian networks of fuzzy random variables. This paper deals with different definitions and classifications of uncertainty, sources of uncertainty, and theories and methodologies presented to deal with uncertainty. Fuzzification of crisp certainty degrees to fuzzy variables improves the quality of the network and tends to bring smoothness and robustness in the network performance. The aim is to provide a new approach for decision under uncertainty that combines three methodologies: Bayesian networks certainty distribution and fuzzy logic. Within the framework proposed in this paper, we address the issue of extending the certain networks to a fuzzy certain networks in order to cope with a vagueness and limitations of existing models for decision under imprecise and uncertain knowledge.
---
PDF链接:
https://arxiv.org/pdf/1206.1319
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:贝叶斯网络 贝叶斯网 知识库 贝叶斯 提供 certain 质量 解决 环境

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 20:20