摘要翻译:
随着半导体特征尺寸的逐步缩小,人们期待着更多的摩尔,更多的摩尔。为了提供一个可能的替代实现过程,人们试图找出从硅计算到分子计算的可行转移。这种转移是基于生物模块的计算机逻辑编程,目的是实现图灵机。为了实现这一点,基于DNA的组合逻辑不可避免地是我们已经处理的第一步。这篇适时的综述论文分别从模拟和数字两个角度介绍了在DNA计算中合成的组合逻辑。对最新的研究进展进行了总结,以使感兴趣的读者能够快速理解DNA计算,引发对现有技术的讨论,并启发创新解决方案。我们希望本文能为将来的DNA计算合成铺平道路。
---
英文标题:
《DNA Computing for Combinational Logic》
---
作者:
Chuan Zhang (1 and 2 and 3), Lulu Ge (1 and 2 and 3), Yuchen Zhuang (1
and 2 and 3), Ziyuan Shen (1 and 2 and 3), Zhiwei Zhong (1 and 2 and 3),
Zaichen Zhang (2 and 3), Xiaohu You (2) ((1) Lab of Efficient Architectures
for Digital-communication and Signal-processing (LEADS), (2) National Mobile
Communications Research Laboratory, (3) Quantum Information Center, Southeast
University, China)
---
最新提交年份:
2018
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Emerging Technologies 新兴技术
分类描述:Covers approaches to information processing (computing, communication, sensing) and bio-chemical analysis based on alternatives to silicon CMOS-based technologies, such as nanoscale electronic, photonic, spin-based, superconducting, mechanical, bio-chemical and quantum technologies (this list is not exclusive). Topics of interest include (1) building blocks for emerging technologies, their scalability and adoption in larger systems, including integration with traditional technologies, (2) modeling, design and optimization of novel devices and systems, (3) models of computation, algorithm design and programming for emerging technologies.
涵盖基于硅CMOS技术替代品的信息处理(计算、通信、传感)和生物化学分析方法,如纳米级电子、光子、自旋、超导、机械、生物化学和量子技术(此列表不是唯一的)。感兴趣的主题包括:(1)新兴技术的构建块、其可伸缩性和在大型系统中的采用,包括与传统技术的集成;(2)新型设备和系统的建模、设计和优化;(3)新兴技术的计算模型、算法设计和编程。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Molecular Networks 分子网络
分类描述:Gene regulation, signal transduction, proteomics, metabolomics, gene and enzymatic networks
基因调控、信号转导、蛋白质组学、代谢组学、基因和酶网络
--
---
英文摘要:
With the progressive scale-down of semiconductor's feature size, people are looking forward to More Moore and More than Moore. In order to offer a possible alternative implementation process, people are trying to figure out a feasible transfer from silicon to molecular computing. Such transfer lies on bio-based modules programming with computer-like logic, aiming at realizing the Turing machine. To accomplish this, the DNA-based combinational logic is inevitably the first step we have taken care of. This timely overview paper introduces combinational logic synthesized in DNA computing from both analog and digital perspectives separately. State-of-the-art research progress is summarized for interested readers to quick understand DNA computing, initiate discussion on existing techniques and inspire innovation solutions. We hope this paper can pave the way for the future DNA computing synthesis.
---
PDF链接:
https://arxiv.org/pdf/1807.0201


雷达卡



京公网安备 11010802022788号







