摘要翻译:
研究了临界水平上仿射Kac-Moody李代数上的模范畴与仿射标志方案G((t))/I上的D-模范畴之间的联系,其中I是Iwahori子群。我们证明了一个局部化类型的结果,它在两边的某些子范畴之间建立了等价性。在Langlands对偶群的Miura opers格式上,我们还建立了Kac-Moody模的子范畴与拟相干束范畴之间的等价性,从而证明了[FG2]的一个猜想。
---
英文标题:
《D-modules on the affine flag variety and representations of affine
Kac-Moody algebras》
---
作者:
Edward Frenkel and Dennis Gaitsgory
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the connection between the category of modules over the affine Kac-Moody Lie algebra at the critical level, and the category of D-modules on the affine flag scheme G((t))/I, where I is the Iwahori subgroup. We prove a localization-type result, which establishes an equivalence between certain subcategories on both sides. We also establish an equivalence between a certain subcategory of Kac-Moody modules, and the category of quasi-coherent sheaves on the scheme of Miura opers for the Langlands dual group, thereby proving a conjecture of [FG2].
---
PDF链接:
https://arxiv.org/pdf/0712.0788


雷达卡



京公网安备 11010802022788号







