摘要翻译:
我们证明了Cohen-Macaulay正规簇$x$具有Du Bois奇点当且仅当$\pi_*\omega_{x'}(G)\simeq\omega_x$对于一个对数分辨率$\pi:x'\到x$,其中$G$是$\pi$的约化例外因子。许多关于Du Bois奇点的基本定理通过这种刻画变得透明(包括Cohen-Macaulay对数正则奇点是Du Bois的事实)。在Cohen-Macaulay情形下,我们也给出了半对数正则奇点的推广是Du Bois的一个直接的、自包含的证明。本文还证明了Kodaira消失定理对半对数正则簇成立,Cohen-Macaulay半对数正则奇点在Dolgachev意义下是上同调的不重要的。
---
英文标题:
《The canonical sheaf of Du Bois singularities》
---
作者:
S\'andor J. Kov\'acs, Karl E. Schwede, Karen E. Smith
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
We prove that a Cohen-Macaulay normal variety $X$ has Du Bois singularities if and only if $\pi_*\omega_{X'}(G) \simeq \omega_X$ for a log resolution $\pi: X' \to X$, where $G$ is the reduced exceptional divisor of $\pi$. Many basic theorems about Du Bois singularities become transparent using this characterization (including the fact that Cohen-Macaulay log canonical singularities are Du Bois). We also give a straightforward and self-contained proof that (generalizations of) semi-log-canonical singularities are Du Bois, in the Cohen-Macaulay case. It also follows that the Kodaira vanishing theorem holds for semi-log-canonical varieties and that Cohen-Macaulay semi-log-canonical singularities are cohomologically insignificant in the sense of Dolgachev.
---
PDF链接:
https://arxiv.org/pdf/0801.1541


雷达卡



京公网安备 11010802022788号







