楼主: nandehutu2022
374 0

[计算机科学] 渗流阈值对粒子群算法性能的影响 [推广有奖]

  • 0关注
  • 5粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
69.3721
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24246 点
帖子
4004
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-20

楼主
nandehutu2022 在职认证  发表于 2022-4-1 10:40:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
统计证据表明,邻域拓扑结构对粒子群优化算法性能的影响已在许多工作中显示出来。然而,很少有人做关于可能有渗流阈值的含义,以确定这个邻域的拓扑结构。这项工作为像机器人一样能够感知周围有限区域的个体解决了这个问题。基于渗流阈值的概念,更确切地说,基于二维圆盘渗流模型,我们证明了当个体偶尔询问他人的最佳访问位置时,在半径较小的情况下可以获得更好的结果,从而降低了计算复杂度。另一方面,由于渗流阈值是一个普遍的测度,因此比较不同混合粒子群算法的性能具有很大的意义。
---
英文标题:
《On how percolation threshold affects PSO performance》
---
作者:
Blanca Cases, Alicia D'Anjou, Abdelmalik Moujahid
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  Statistical evidence of the influence of neighborhood topology on the performance of particle swarm optimization (PSO) algorithms has been shown in many works. However, little has been done about the implications could have the percolation threshold in determining the topology of this neighborhood. This work addresses this problem for individuals that, like robots, are able to sense in a limited neighborhood around them. Based on the concept of percolation threshold, and more precisely, the disk percolation model in 2D, we show that better results are obtained for low values of radius, when individuals occasionally ask others their best visited positions, with the consequent decrease of computational complexity. On the other hand, since percolation threshold is a universal measure, it could have a great interest to compare the performance of different hybrid PSO algorithms.
---
PDF链接:
https://arxiv.org/pdf/1204.3844
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:粒子群算法 粒子群 neighborhood Intelligence Optimization 降低 percolation threshold 拓扑 基于

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-23 14:47