楼主: a智多星
987 0

改进的粒子群算法及其SVM参数优化应用 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-9 18:00:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量机是一种性能优越的机器学习算法,而其参数的选择对建模精度和泛化性能等有着重要的影响,也是目前机器学习研究的一个重要方向。在简要介绍基本粒子群优化(PSO)算法的基础上,提出了一种量子粒子群优化算法,给出了其实现方式,并通过4个基准测试函数进行性能对比评价。基于这种量子粒子群优化算法,对最小二乘支持向量机(LS-SVM)的参数优化进行了研究。仿真结果表明,量子粒子群优化算法能给出很好的优化结果。

原文链接:http://www.cqvip.com//QK/91690X/201110/37389225.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:粒子群算法 粒子群 SVM 机器学习算法 支持向量机 量子粒子群 最小二乘支持向量机 基准测试 参数优化

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-29 12:33