摘要翻译:
我们考虑了有简谐相互作用的有序振子链上的热传导,也考虑了在位简谐势下的热传导。对于除边界站点之外的所有站点,onsite spring常数都是相同的。该链在不同温度下连接到欧姆热储层。我们使用一种直接解朗之万运动方程的方法。这在经典和量子体系中都起作用。在经典情况下,我们得到了系统尺寸N到无穷大范围内热流的精确公式。在特殊情况下,这归结为Rieder、Lebowitz和Lieb以及Nakazawa的早期结果。在量子力学的情况下,我们也得到了热流与温度的关系。我们简要地讨论了高维的结果。
---
英文标题:
《Heat transport in ordered harmonic lattices》
---
作者:
Dibyendu Roy, Abhishek Dhar
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Disordered Systems and Neural Networks 无序系统与神经网络
分类描述:Glasses and spin glasses; properties of random, aperiodic and quasiperiodic systems; transport in disordered media; localization; phenomena mediated by defects and disorder; neural networks
眼镜和旋转眼镜;随机、非周期和准周期系统的性质;无序介质中的传输;本地化;由缺陷和无序介导的现象;神经网络
--
---
英文摘要:
We consider heat conduction across an ordered oscillator chain with harmonic interparticle interactions and also onsite harmonic potentials. The onsite spring constant is the same for all sites excepting the boundary sites. The chain is connected to Ohmic heat reservoirs at different temperatures. We use an approach following from a direct solution of the Langevin equations of motion. This works both in the classical and quantum regimes. In the classical case we obtain an exact formula for the heat current in the limit of system size N to infinity. In special cases this reduces to earlier results obtained by Rieder, Lebowitz and Lieb and by Nakazawa. We also obtain results for the quantum mechanical case where we study the temperature dependence of the heat current. We briefly discuss results in higher dimensions.
---
PDF链接:
https://arxiv.org/pdf/711.4318


雷达卡



京公网安备 11010802022788号







