摘要翻译:
本文研究了Murre关于Chow-k“unneth分解的两类猜想,我们考察了在模空间$cm_g$上支配的光滑曲线的泛族,其亏格最多为8,并证明了Chow-k”unneth分解的存在性。第二类例子包括具有一个关系的有限生成群的表示变体。这是在等变上同调和等变Chow群的背景下完成的,得到了等变Chow-k“unneth分解。
---
英文标题:
《Chow--Kuenneth decomposition for special varieties》
---
作者:
Jaya NN Iyer and Stefan M\"uller-Stach
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
In this paper we investigate Murre's conjecture on the Chow--K\"unneth decomposition for two classes of examples. We look at the universal families of smooth curves over spaces which dominate the moduli space $\cM_g$, in genus at most 8 and show existence of a Chow--K\"unneth decomposition. The second class of examples include the representation varieties of a finitely generated group with one relation. This is done in the setting of equivariant cohomology and equivariant Chow groups to get equivariant Chow--K\"unneth decompositions.
---
PDF链接:
https://arxiv.org/pdf/0710.4002


雷达卡



京公网安备 11010802022788号







