摘要翻译:
这是一个关于高度zeta函数理论的调查,写于2008年1月在三浦(神奈川,日本)举行的一个法日冬季学校的场合。它并不预设大量的代数几何知识。综述的最后一章解释了最近与Yuri Tschinkel合作获得的关于局部场或adelic空间上解析几何中高度球体积的渐近性的结果。
---
英文标题:
《Lectures on height zeta functions: At the confluence of algebraic
geometry, algebraic number theory, and analysis》
---
作者:
Antoine Chambert-Loir (IRMAR)
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This is a survey on the theory of height zeta functions, written on the occasion of a French-Japanese winter school, held in Miura (Kanagawa, Japan) in Jan. 2008. It does not presuppose much knowledge in algebraic geometry. The last chapter of the survey explains recent results obtained in collaboration with Yuri Tschinkel concerning asymptotics of volumes of height balls in analytic geometry over local fields, or in adelic spaces.
---
PDF链接:
https://arxiv.org/pdf/0812.0947


雷达卡



京公网安备 11010802022788号







