摘要翻译:
文献[12]中确定了有理椭圆曲线E上Heegner点的Neron-Tate高度满足所谓Heegner条件的二次判别式上的平均值的前序项。此外,还对二阶项进行了推测。本文证明了这个猜想的二阶项是正确的;这在剩余的任期内产生了省电。等差数列中GL(2)-尖点形式的Fourier系数的对消是证明的核心。
---
英文标题:
《Comportement asymptotique des hauteurs des points de Heegner》
---
作者:
Guillaume Ricotta, Nicolas Templier
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The leading order term for the average, over quadratic discriminants satisfying the so-called Heegner condition, of the Neron-Tate height of Heegner points on a rational elliptic curve E has been determined in [12]. In addition, the second order term has been conjectured. In this paper, we prove that this conjectured second order term is the right one; this yields a power saving in the remainder term. Cancellations of Fourier coefficients of GL(2)-cusp forms in arithmetic progressions lie in the core of the proof.
---
PDF链接:
https://arxiv.org/pdf/0807.2930


雷达卡



京公网安备 11010802022788号







