摘要翻译:
给出了有限群半自由的条件,半自由比自由更一般,半自由比拟自由更有限制。特别地,每个射影半自由的profliment群都是自由的。我们证明了自由群通常的持久性质可以延续到半自由群。利用这一点,我们得出结论:如果k是一个分离闭域,那么k((x,y))的许多域扩张都有自由绝对Galois群。
---
英文标题:
《Permanence criteria for semi-free profinite groups》
---
作者:
Lior Bary-Soroker, Dan Haran, David Harbater
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Group Theory 群论
分类描述:Finite groups, topological groups, representation theory, cohomology, classification and structure
有限群、拓扑群、表示论、上同调、分类与结构
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We introduce the condition of a profinite group being semi-free, which is more general than being free and more restrictive than being quasi-free. In particular, every projective semi-free profinite group is free. We prove that the usual permanence properties of free groups carry over to semi-free groups. Using this, we conclude that if k is a separably closed field, then many field extensions of k((x,y)) have free absolute Galois groups.
---
PDF链接:
https://arxiv.org/pdf/0810.0845


雷达卡



京公网安备 11010802022788号







