摘要翻译:
我们考虑了由多个空间分离的设备捕获的语音源的分离问题,每个设备都有多个麦克风,并以稍微不同的速率对其信号进行采样。大多数异步阵列处理方法依赖于采样率偏移估计和重采样,但如果信源或麦克风在移动,这些偏移可能很难估计。我们提出了一种不需要偏移估计或信号重采样的源分离方法。取而代之的是,我们将分布式阵列划分为几个同步子阵列。所有阵列联合用于估计信号的时变统计量,并利用这些统计量在每个阵列中设计单独的时变空间滤波器。我们演示了在静止和移动麦克风阵列上记录语音混合的方法。
---
英文标题:
《Speech Separation Using Partially Asynchronous Microphone Arrays Without
Resampling》
---
作者:
Ryan M. Corey and Andrew C. Singer
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
---
英文摘要:
We consider the problem of separating speech sources captured by multiple spatially separated devices, each of which has multiple microphones and samples its signals at a slightly different rate. Most asynchronous array processing methods rely on sample rate offset estimation and resampling, but these offsets can be difficult to estimate if the sources or microphones are moving. We propose a source separation method that does not require offset estimation or signal resampling. Instead, we divide the distributed array into several synchronous subarrays. All arrays are used jointly to estimate the time-varying signal statistics, and those statistics are used to design separate time-varying spatial filters in each array. We demonstrate the method for speech mixtures recorded on both stationary and moving microphone arrays.
---
PDF链接:
https://arxiv.org/pdf/1808.00096