摘要翻译:
我们考虑对一个连续时间或异步随机系统的滤波,其中状态的全分布太大,无法存储或计算。我们假定系统的速率矩阵可以被紧凑地表示,置信分布可以近似为边际的乘积。其基本计算是矩阵指数。我们研究了两种不同的计算方法:ODE积分和Taylor展开的均匀化。对于这两种情况,我们都考虑只保持因数信念状态的近似。对于因子一致化,我们证明了滤波的KL-散度是有界的。我们的实验结果证实了我们的因子均匀化方法比以前提出的均匀化方法和平均场算法有更好的性能。
---
英文标题:
《Factored Filtering of Continuous-Time Systems》
---
作者:
E. Busra Celikkaya, Christian R. Shelton, William Lam
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Systems and Control 系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
We consider filtering for a continuous-time, or asynchronous, stochastic system where the full distribution over states is too large to be stored or calculated. We assume that the rate matrix of the system can be compactly represented and that the belief distribution is to be approximated as a product of marginals. The essential computation is the matrix exponential. We look at two different methods for its computation: ODE integration and uniformization of the Taylor expansion. For both we consider approximations in which only a factored belief state is maintained. For factored uniformization we demonstrate that the KL-divergence of the filtering is bounded. Our experimental results confirm our factored uniformization performs better than previously suggested uniformization methods and the mean field algorithm.
---
PDF链接:
https://arxiv.org/pdf/1202.3703


雷达卡



京公网安备 11010802022788号







