《Option Pricing, Historical Volatility and Tail Risks》
---
作者:
Samuel E. Vazquez
---
最新提交年份:
2014
---
英文摘要:
We revisit the problem of pricing options with historical volatility estimators. We do this in the context of a generalized GARCH model with multiple time scales and asymmetry. It is argued that the reason for the observed volatility risk premium is tail risk aversion. We parametrize such risk aversion in terms of three coefficients: convexity, skew and kurtosis risk premium. We propose that option prices under the real-world measure are not martingales, but that their drift is governed by such tail risk premia. We then derive a fair-pricing equation for options and show that the solutions can be written in terms of a stochastic volatility model in continuous time and under a martingale probability measure. This gives a precise connection between the pricing and real-world probability measures, which cannot be obtained using Girsanov Theorem. We find that the convexity risk premium, not only shifts the overall implied volatility level, but also changes its term structure. Moreover, the skew risk premium makes the skewness of the volatility smile steeper than a pure historical estimate. We derive analytical formulas for certain implied moments using the Bergomi-Guyon expansion. This allows for very fast calibrations of the models. We show examples of a particular model which can reproduce the observed SPX volatility surface using very few parameters.
---
中文摘要:
我们用历史波动率估值器重新讨论了期权定价问题。我们在一个具有多个时间尺度和不对称性的广义GARCH模型的背景下这样做。有人认为,观察到的波动性风险溢价的原因是尾部风险厌恶。我们用三个系数来参数化这种风险规避:凸度、倾斜和峰度风险溢价。我们认为,现实世界中的期权价格不是鞅,而是由这种尾部风险溢价决定的。然后,我们推导了期权的公平定价方程,并证明了在连续时间和鞅概率测度下,解可以用随机波动率模型表示。这给出了定价和现实世界概率测度之间的精确联系,而这是用Girsanov定理无法得到的。我们发现,凸性风险溢价不仅改变了整体隐含波动率水平,还改变了其期限结构。此外,倾斜风险溢价使得波动率的倾斜度比纯粹的历史估计更陡峭。我们使用Bergomi-Guyon展开式导出了某些隐含力矩的解析公式。这允许对模型进行非常快速的校准。我们展示了一个特定模型的例子,该模型可以使用很少的参数重现观测到的SPX波动率表面。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
PDF下载:
-->
Option_Pricing,_Historical_Volatility_and_Tail_Risks.pdf
(794.97 KB)


雷达卡



京公网安备 11010802022788号







