《Model-independent Superhedging under Portfolio Constraints》
---
作者:
Arash Fahim and Yu-Jui Huang
---
最新提交年份:
2015
---
英文摘要:
In a discrete-time market, we study model-independent superhedging, while the semi-static superhedging portfolio consists of {\\it three} parts: static positions in liquidly traded vanilla calls, static positions in other tradable, yet possibly less liquid, exotic options, and a dynamic trading strategy in risky assets under certain constraints. By considering the limit order book of each tradable exotic option and employing the Monge-Kantorovich theory of optimal transport, we establish a general superhedging duality, which admits a natural connection to convex risk measures. With the aid of this duality, we derive a model-independent version of the fundamental theorem of asset pricing. The notion \"finite optimal arbitrage profit\", weaker than no-arbitrage, is also introduced. It is worth noting that our method covers a large class of Delta constraints as well as Gamma constraint.
---
中文摘要:
在离散时间市场中,我们研究模型独立的超边际,而半静态超边际投资组合由{\\it三个}部分组成:流动交易的普通看涨期权中的静态头寸,其他可交易但可能流动性较低的奇异期权中的静态头寸,以及在一定约束条件下风险资产中的动态交易策略。通过考虑每一个可交易的奇异期权的极限指令簿,并利用Monge-Kantorovich最优运输理论,我们建立了一个一般的超边对偶,它允许与凸风险测度有自然联系。借助这种对偶性,我们导出了资产定价基本定理的一个独立于模型的版本。引入了比无套利更弱的“有限最优套利利润”概念。值得注意的是,我们的方法涵盖了一大类Delta约束和Gamma约束。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
PDF下载:
-->
Model-independent_Superhedging_under_Portfolio_Constraints.pdf
(308.6 KB)


雷达卡



京公网安备 11010802022788号







