楼主: 可人4
761 29

[量化金融] 重尾资产的投资组合优化:极端风险指数vs。 [推广有奖]

21
何人来此 在职认证  发表于 2022-5-8 05:26:18
在回溯测试期的第一天,ERI策略及其同行(MV、EW和标准普尔500)的最终投资组合价值将缩放至100。致444只幸存者股票。表4.1显示了基本ERI方法与其同行相比的更多特征。数据显示,ERI策略在很多方面都优于MV和EW投资组合。特别是,theERI最优投资组合具有更高的累积回报率和更高的利差,而最大提取率低于MV策略。基于预期短缺(ES)的夏普比率的扩展是斯塔尔比率(参见Rachev等人[39]):斯塔尔λ(Z):=E(Z)- rf)ESλ(Z)- rf)其中rf是无风险利率,λ是接近1的置信水平。ERI策略的后验STARR也高于MVI方法。夏普和斯塔尔比率的计算是基于对预期和预期短缺的经验估计。股份有限公司2015年,爱思唯尔。根据Creative Commons Attribute NoDerivatives 4.0 Internationalhttp://creativecommons授权。组织/许可证/由nc nd/4提供。0/最终出版物现在可在doi:10.1016/j.jemp fin.2015.03.003ERI MV EW S&P 500CR(累积回报)30.07%25.48%23.24%-19.38%AR(年化回报)6.76%5.81%5.34%-5.22%AS(年化夏普)0.4715 0.3469 0.3229-0.0462AST(年化星号0.95)0.1926 0.1410.1318-0.0187MD(最大下降)46.61%58.63.27%AC(年化夏普)平均浓度系数127.22%444 N/AAT(平均营业额)0.0400 0.0272 0.01 N/APCA(第一主成分分析因子解释方差)31.32%35.48%38.80%N/ATable 4.1在基本设置下(一次应用于所有股票)与。

22
kedemingshi 在职认证  发表于 2022-5-8 05:26:22
最小方差(MV)、等权投资组合(EW)和标准普尔500指数。特别是ES0的估计。95在1009天的回溯测试期间,基于51个最大的投资组合损失观察。由于日标度的无风险利率既难以确定,又小到可以忽略不计,因此我们将rf设为0。表4.1和本文所有其他表格中报告的年度夏普和斯塔尔比率是通过每日比率乘以系数得出的√252.这种启发式方法基于这样一种假设:日历年的T=252个工作日,收益率以系数T表示,而年度波动率和预期缺口以系数T表示√T由此得出的年化值是非常粗略的近似值,但根据10年的数据,对年回报率、波动率和预期缺口进行更可靠的估计是不可行的。为了衡量投资组合股票的集中度,我们计算了集中系数(CC)。定义为asCC(t):=nXi=1wi(t)!-1(4.1)式中,wi(t)是t时投资组合中资产i的相对权重。从概念上讲,这种方法在工业集中度的度量中是众所周知的,在工业集中度的度量中,它被称为赫芬达尔-赫希曼指数(HHI)。Brandes研究所通过反转C引入了浓度系数2015年,爱思唯尔。根据Creative Commons Attribute NoDerivatives 4.0 Internationalhttp://creativecommons授权。组织/许可证/由nc nd/4提供。0/最终出版物现在可在doi:10.1016/j.jemp fin.2015.03.003HHI上获得。等权投资组合的CC与资产数量相同。随着投资组合集中在较少的资产上,资本成本成比例下降。

23
何人来此 在职认证  发表于 2022-5-8 05:26:25
表4.1中的数字表明,ERI策略具有相当高的选择性,而MV Portfolois中的股票数量与资产总数具有相同的规模。为了评估每个优化算法提供的多样化水平,我们对与相应投资组合相关的所有股票的回报进行了主成分分析(PCA)。我们通过算法分配的投资组合权重定义相关性,并将PCA限制在投资组合权重高于0.01%的股票上。然后,我们估计了由第一个PCA因子解释的样本方差部分,并对回溯测试期间的每日估计值进行了平均。第一个主成分分析因子解释的样本方差平均部分越低,投资组合的差异就越大。表4.1中的数字非常令人惊讶:尽管集中度显著提高,但基于ERI的投资组合的多元化水平高于MV策略。ERI落后于MV的唯一绩效特征是投资组合周转率,这是一项战略交易成本的代表。我们使用基于再平衡交易绝对值的投资组合周转率定义:τ(t):=nXi=1 | wi(t)- wi(t)-)|式中,wi(t)是在时间t重新平衡(根据优化策略)后资产i的(相对)投资组合权重,wi(t-) 是在时间t重新平衡之前,即交易期t结束时,资产i的portfolioweight- 1.表4.1给出了回溯测试期间所有t的τ(t)平均值。ERI最优投资组合(0.0400)的平均换手率高于最小方差投资组合(0.0272)。一些技术细节。在计算投资组合价值时,我们使用了相对回报,并且在使用对数近似法时,预计不会有太大差异。

24
nandehutu2022 在职认证  发表于 2022-5-8 05:26:28
在计算STARR和Sharpe比率时,我们不使用无风险利率,因为它们每天都非常小,因此对比率计算几乎没有影响。对于ES inSTARR的估计,我们使用小于样本95%VaR的所有样本值的平均值。我们的回溯测试周期为1009,因此ES估计基于n=51个观察值。C2015年,爱思唯尔。根据Creative Commons Attribute NoDerivatives 4.0 Internationalhttp://creativecommons授权。组织/许可证/由nc nd/4提供。0/最终出版物现在可在doi:10.1016/j.jemp fin.2015.03.0034.2上获得。在上一节中,我们将股票与相似的α进行分组,将所有股票视为其(对数)回报率具有相同的尾部指数α。这种简化会影响定量和定性结果。为了获得更好的洞察力,我们将股票按其各自的α分为三个不同的组,并比较每个组的投资组合优化策略的性能。图4.2显示了回溯测试周期第一天(t=1501)不同股票的尾部指数α估计值的直方图。1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2020406080100120α图4.2回溯测试周期第一天不同股票的尾部指数α估计值我们考虑以下几组:1。所有带有α的股票≤ 2.22. 所有带有α的股票∈ (2.2, 2.6)3. 所有带有α的股票≥ 2.6第一组包含134只股票,第二组包含243只股票,第三组包含67只股票。这些组在回溯测试期间保持不变。也就是说,回溯测试期第一天的估计α决定了每只股票被放在哪一组。C2015年,爱思唯尔。根据Creative Commons Attribute NoDerivatives 4.0 Internationalhttp://creativecommons授权。组织/许可证/由nc nd/4提供。

25
能者818 在职认证  发表于 2022-5-8 05:26:31
0/最终出版物现在可在doi:10.1016/j.jemp fin.2015.03.0034060801001401601601601801801801上获得-十一月-200720-12月-200711-二月-200801-四月-200819-也许-200808-七月-200825-八月-200813-十月-200801-12月-200821-简-200911-破坏-200929-四月-200917-六月-200905-八月-200923-九月-200910-十一月-200930-12月-200919-二月-201009-四月-201027-也许-201016-七月-201002-九月-201021-十月-201009-12月-201028-简-201118-破坏-201106-也许-201124-六月-201112-八月-201130-九月-2011年投资组合优化回溯测试- 每日再平衡ERIS&P 500最小方差等权重图4.3投资组合优化回溯测试。含α的股票≤ 2.2ERI MV EW S&P 500CR 54.70%21.58%22.30%19.38%AR 11.48%4.99%5.14%5.22%0.6623 0.3546 0.3182-0.0462AST 0.2695 0.1430.1299-0.0187MD 53.67%48.03%61.32%56.34%AC 7.4499 10.9712 134 N/AAT 0.0269 0.0154 0.01 N/APCA 35.02%33.33%35.17%N/ATable 4.2回溯测试统计数据。含α的股票≤ 2.2从带有α的股票集合中选择≤ 2.2尾部指数为α的股票的回溯测试结果≤ 2.2如图4.3和表4.2所示。在这种情况下,ERI最小化明显优于同行,并产生了令人印象深刻的11.48%的年化回报率。这比MV或EW投资组合实现的约5%的两倍还要多。EW投资组合的整体表现再次与MV投资组合相似,但有更大的下降。因此,在这种情况下,必须考虑MV基准。ERI策略的夏普和斯塔尔比率也明显高于MV。这两个投资组合的集中度是相同的,但基于ERI的投资组合的集中度仍然略高。与对所有标准普尔500指数股票进行的基本回溯测试类似,ERI策略产生了更高的投资组合周转率(0.0269,而MV为0.0154)。

26
nandehutu2022 在职认证  发表于 2022-5-8 05:26:35
然而,这两个值都低于基本设置下MV投资组合的平均营业额(0.0272)。这些结果表明,ERI策略对于优化厚尾股票的投资组合特别有用,在我们的案例中,444只股票中有134只。这是意料之中的,因为ERI方法是为重尾MRV模型开发的。除此之外,在目前的环境下,MV方法的性能较差还有一个统计原因。对于较重的尾部,协方差的估计变得越来越困难,对于α<2,协方差(以及相关)甚至不存在。马科维茨方法中使用的心理协方差可能会将投资者推向错误的方向。C2015年,爱思唯尔。根据Creative Commons Attribute NoDerivatives 4.0 Internationalhttp://creativecommons授权。组织/许可证/由nc nd/4提供。0/最终出版物现在可在doi:10.1016/j.jemp fin.2015.03.003上获得,从带有α的股票集合中选择∈ (2.2, 2.6)40506070809010011012013014001-十一月-200720-12月-200711-二月-200801-四月-200819-也许-200808-七月-200825-八月-200813-十月-200801-12月-200821-简-200911-破坏-200929-四月-200917-六月-200905-八月-200923-九月-200910-十一月-200930-12月-200919-二月-201009-四月-201027-也许-201016-七月-201002-九月-201021-十月-201009-12月-201028-简-201118-破坏-201106-也许-201124-六月-201112-八月-201130-九月-2011年投资组合优化回溯测试- 每日重新平衡ERIS&P 500最小方差等权重图4.4投资组合优化回溯测试。含α的股票∈ (2.2,2.6)ERI MV EW S&P 500CR 35.87%31.00%22.28%19.38%AR 7.93%6.96%5.14%5.22%AS 0.5448 0.3711 0.3170-0.0662AST 0.2306 0.1517 0.1301-0.0187MD 45.56%57.70%63.89%56.34%AC 7.3987 1.00 243 N/AAT 0.0249 0.0000 0.01 N/APCA 32.78%100.00%40.24%N/Test可回溯统计4.3。

27
可人4 在职认证  发表于 2022-5-8 05:26:39
含α的股票∈ (2.2,2.6)如果股票选择仅限于α介于2.2和2.6之间的股票,则基于ERI的投资组合的年化回报率(7.93%)略高于MV和EW基准(分别为6.96%和5.14%)。虽然回报率相同,但MV和EW投资组合的波动率却越来越高。因此,ERI优化在Sharpe ratio、STARR(ERI均较高)和最大下降(ERI均较低)方面明显优于同行。令人惊讶的是,MV投资组合的PCA为100%,即最小方差算法仅选择一只股票。从带有α的股票集合中选择≥ 2.6对于α>2.6(因此尾巴最轻)的股票,在年化回报率、夏普比率、STARR和营业额方面,theERI最小化策略的表现落后于MV和EW。ERI和MV的最大提款率相似,EW投资组合的最大提款率更高。就PCA而言,三种竞争策略的差异水平相似。ERI和MV方法产生的投资组合浓度处于相同水平,对于ERI最优投资组合略高。因此,ERI最小化策略令人印象深刻的优势似乎仅限于具有明显重尾行为的股票。这一优势转化为中等偏厚尾部股票的近似平价。对于轻尾股票,MV策略会产生更高的年化回报率,同时也会产生类似的下降,EW投资组合的回报率甚至更高,但也会显著下降2015年,爱思唯尔。根据Creative Commons Attribute NoDerivatives 4.0 Internationalhttp://creativecommons授权。组织/许可证/由nc nd/4提供。

28
mingdashike22 在职认证  发表于 2022-5-8 05:26:43
0/最终出版物现在可在doi:10.1016/j.jemp FIN.2015.03.0034060801001401601601601601601601上获得-十一月-200720-12月-200711-二月-200801-四月-200819-也许-200808-七月-200825-八月-200813-十月-200801-12月-200821-简-200911-破坏-200929-四月-200917-六月-200905-八月-200923-九月-200910-十一月-200930-12月-200919-二月-201009-四月-201027-也许-201016-七月-201002-九月-201021-十月-201009-12月-201028-简-201118-破坏-201106-也许-201124-六月-201112-八月-201130-九月-2011年投资组合优化回溯测试- 每日重新平衡ERIS&P 500最小方差等权重图4.5投资组合优化回溯测试。含α的股票≥ 2.6ERI MV EW S&P 500CR 3.47%13.62%25.27%-19.38%AR 0.85%3.23%5.77%-5.22%AS 0.1397 0.2636 0.3367-0.0462AST 0.0581 0.1114 0.1382-0.0187MD 42.58%43.43%64.89%56.34%AC 3.4817 4.4715 67N/AAT 0.0165 0.0091 0.01 N/APCA 54.92%52%N/ATable 4反测试统计数据。α ≥ 2.6更高的最大压降。这些发现完全符合这两种方法的模型假设:MV使用协方差,Andri最小化特别适用于协方差不存在或无法可靠估计的情况。另一方面,ERI最小化强烈依赖于尾部指数α的估计,这对于较轻的尾部来说变得越来越困难——参见Embrechts等人[15]。4.3使用α的替代估计器进行回溯测试为了评估我们用于α的估计器的适用性,我们用另一种估计方法重复了回溯测试实验。(3.1)中的Hill估计器使用尾分数大小k作为参数。上述结果基于静态10%规则,即k=150。众所周知,尾部部分大小k的选择可能会对最终的估计产生很大影响——例如,见Embrechts等人[15]。

29
何人来此 在职认证  发表于 2022-5-8 05:26:46
因此,作为静态10%规则的替代方案,我们尝试了Nguyen和Samorodnitsky[37]最近提出的自适应方法,该方法涉及多项式尾部的顺序统计测试。这项回溯测试研究的结果概述如下。对整组股票的优化图4.6和表4.5表示基本设置,而不根据估计的尾部指数α对股票进行分组。令人惊讶的是,尾部部分大小k的自适应选择并没有改善基于ERI的策略的性能。年化回报率明显低于C2015年,爱思唯尔。根据Creative Commons Attribute NoDerivatives 4.0 Internationalhttp://creativecommons授权。组织/许可证/由nc nd/4提供。0/最终出版物现在可在doi:10.1016/j.jemp fin.2015.03.0034050607080901001012013014001上获得-十一月-200720-12月-200711-二月-200801-四月-200819-也许-200808-七月-200825-八月-200813-十月-200801-12月-200821-简-200911-破坏-200929-四月-200917-六月-200905-八月-200923-九月-200910-十一月-200930-12月-200919-二月-201009-四月-201027-也许-201016-七月-201002-九月-201021-十月-201009-12月-201028-简-201118-破坏-201106-也许-201124-六月-201112-八月-201130-九月-2011年投资组合优化回溯测试- 每日再平衡ERI标准普尔500最小方差等权重图4.6替代估值器α:基本设置中的投资组合优化回溯测试(对所有标准普尔500股票)ERI MV EW标准普尔500CR 11.76%25.48%23.24%-19.38%AR 2.81%5.81%5.81%5.34%-5.22%0.2360.3469 0.3229-0.0462AST 0.0939 0.1410.1318-0.0187MD 51.39%58.61%63.34%AC 64.33%5.22/AAT 0.0372%APCN 0.0135.49%38.80%N/ATable 4.5备选方案α:基本设置中的回溯测试统计。使用静态10%规则。总体结果明显落后于MVE和EW基准。

30
大多数88 在职认证  发表于 2022-5-8 05:26:49
ERI仍然更好的唯一方面是最大的下降,但它无法弥补较低的总体回报。产生这种结果的原因是自适应方法选择的尾部部分大小k值较低。典型值约为25,而静态10%规则中的所有值均低于150。因此,适应性方法看得太远了,超出概率的缩放可能已经不同于应用范围内的缩放。根据估计的α对股票进行分组作为下一步,我们根据其估计对股票进行分组。平均而言,Nguyen–Samorodnitsky估值器给出了更高的α值,也就是说,它显示出比静态10%规则更轻的尾部。因此,我们选择了一组不同的α值:α≤ 2.7, α ∈ (2.7,4.5)和α≥ 4.5. 回溯测试结果如表4.6所示。在这三种情况下,ERI策略的年化回报率都低于MV投资组合的年化回报率。有趣的是,基于eri的策略表现最差的是中间组,而不是尾巴最轻的组。这里可能的解释可能是三组(重尾、中尾或轻尾)的不同组成,以及投资组合优化算法中使用的不同α值。总之,我们可以得出这样的结论:自适应(因此完全自动化)c2015年,爱思唯尔。根据Creative Commons Attribute NoDerivatives 4.0 Internationalhttp://creativecommons授权。组织/许可证/由nc nd/4提供。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-4 05:25