《Getting Started with Particle Metropolis-Hastings for Inference in
Nonlinear Dynamical Models》
---
作者:
Johan Dahlin and Thomas B. Sch\\\"on
---
最新提交年份:
2019
---
英文摘要:
This tutorial provides a gentle introduction to the particle Metropolis-Hastings (PMH) algorithm for parameter inference in nonlinear state-space models together with a software implementation in the statistical programming language R. We employ a step-by-step approach to develop an implementation of the PMH algorithm (and the particle filter within) together with the reader. This final implementation is also available as the package pmhtutorial in the CRAN repository. Throughout the tutorial, we provide some intuition as to how the algorithm operates and discuss some solutions to problems that might occur in practice. To illustrate the use of PMH, we consider parameter inference in a linear Gaussian state-space model with synthetic data and a nonlinear stochastic volatility model with real-world data.
---
中文摘要:
本教程温和地介绍了用于非线性状态空间模型中参数推断的粒子Metropolis Hastings(PMH)算法,以及统计编程语言R中的软件实现。我们采用逐步方法与读者一起开发PMH算法(以及其中的粒子过滤器)的实现。这个最终的实现也可以作为包pmhtutorial在CRAN存储库中获得。在整个教程中,我们提供了一些关于算法如何运行的直觉,并讨论了一些解决实践中可能出现的问题的方法。为了说明PMH的使用,我们考虑了具有合成数据的线性高斯状态空间模型和具有真实数据的非线性随机波动率模型中的参数推断。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->
Getting_Started_with_Particle_Metropolis-Hastings_for_Inference_in_Nonlinear_Dyn.pdf
(1.11 MB)


雷达卡



京公网安备 11010802022788号







