|
参数的选择如【14】所述,其采用了与上文所述【52】类似的方法,q=0.0088,但使用最大似然估计来获得拟合对数伽马分布的参数。与之前一样,以下数组表示年份wiseparametersp=[61.6326,64.2902,71.8574],a=[0.0103,0.0098,0.0080],u=[-5.2452,-5.4600,-5.7238]和σ=[7.4×10-5,9.5×10-5,9.4×10-5] 。表4和表5清楚地表明,即使对于非正常宇宙,边界也是极其精确的。图4-6绘制在图1-3的线条上,强烈支持我们的观察结果。r SWLBSWLBSWLB(2)tM C S.E.(MC)SWUB0。035 0.88325546 0.88432143 0.88554815 0.88468962 0.00006349 0.886806570.030 0.90340398 0.90401002 0.90469396 0.90422765 0.00004987 0.905481790.025 0.92160707 0.92193552 0.92229117 0.92201394 0.00003804 0.922759500.020 0.93840783 0.93857698 0.93874756 0.93863396 0.00002794 0.9390909010430.015 0.95428713 0.95436972 0.95444409 0.95441569 0.00001956 0.954582650.010 0.96963954 0.96967776 0.969706600.96968765 0.00001352 0.969774880.005 0.98476274 0.98477952 0.98478912 0.98478917 0.00000859 0.984820460.000 0.99986135 0.99986838 0.99987088 0.99987622 0.0000513 0.99988427表3:q=0.008453的SU分布下瑞士再保险死亡率债券的下限和上限SWUB,参数选择符合【52】。
|