《Shadow prices, fractional Brownian motion, and portfolio optimisation
under transaction costs》
---
作者:
Christoph Czichowsky, R\\\'emi Peyre, Walter Schachermayer and Junjian
Yang
---
最新提交年份:
2016
---
英文摘要:
We continue the analysis of our previous paper (Czichowsky/Schachermayer/Yang 2014) pertaining to the existence of a shadow price process for portfolio optimisation under proportional transaction costs. There, we established a positive answer for a continuous price process $S=(S_t)_{0\\leq t\\leq T}$ satisfying the condition $(NUPBR)$ of \"no unbounded profit with bounded risk\". This condition requires that $S$ is a semimartingale and therefore is too restrictive for applications to models driven by fractional Brownian motion. In the present paper, we derive the same conclusion under the weaker condition $(TWC)$ of \"two way crossing\", which does not require $S$ to be a semimartingale. Using a recent result of R.~Peyre, this allows us to show the existence of a shadow price for exponential fractional Brownian motion and $all$ utility functions defined on the positive half-line having reasonable asymptotic elasticity. Prime examples of such utilities are logarithmic or power utility.
---
中文摘要:
我们继续分析我们之前的论文(Czichowsky/Schachermayer/Yang 2014),该论文涉及在比例交易成本下投资组合优化的影子价格过程的存在。在这里,我们为连续价格过程$S=(S\\u t){0\\leq t\\leq t}$建立了一个肯定的答案,满足条件$(NUPBR)$的“无无限利润,有界风险”。这个条件要求$S$是半鞅,因此对分数布朗运动驱动的模型的应用限制太大。在本文中,我们在较弱的条件$(TWC)$“双向交叉”下得出了相同的结论,该条件不要求$S$是半鞅。利用R.~ Peyre最近的一个结果,我们可以证明指数分数布朗运动和定义在具有合理渐近弹性的正半线上的$all$效用函数的影子价格的存在性。此类实用程序的主要示例是对数或幂实用程序。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->
Shadow_prices,_fractional_Brownian_motion,_and_portfolio_optimisation_under_tran.pdf
(284.59 KB)


雷达卡



京公网安备 11010802022788号







