《Bayesian Posteriors For Arbitrarily Rare Events》
---
作者:
Drew Fudenberg, Kevin He, and Lorens Imhof
---
最新提交年份:
2017
---
英文摘要:
We study how much data a Bayesian observer needs to correctly infer the relative likelihoods of two events when both events are arbitrarily rare. Each period, either a blue die or a red die is tossed. The two dice land on side $1$ with unknown probabilities $p_1$ and $q_1$, which can be arbitrarily low. Given a data-generating process where $p_1\\ge c q_1$, we are interested in how much data is required to guarantee that with high probability the observer\'s Bayesian posterior mean for $p_1$ exceeds $(1-\\delta)c$ times that for $q_1$. If the prior densities for the two dice are positive on the interior of the parameter space and behave like power functions at the boundary, then for every $\\epsilon>0,$ there exists a finite $N$ so that the observer obtains such an inference after $n$ periods with probability at least $1-\\epsilon$ whenever $np_1\\ge N$. The condition on $n$ and $p_1$ is the best possible. The result can fail if one of the prior densities converges to zero exponentially fast at the boundary.
---
中文摘要:
我们研究当两个事件任意罕见时,贝叶斯观察者需要多少数据才能正确推断两个事件的相对可能性。每一个周期,要么抛出一个蓝色骰子,要么抛出一个红色骰子。两个骰子落在1美元一边,概率未知,p\\u 1美元和q\\u 1美元,可以任意低。给定一个数据生成过程,其中$p\\u 1\\ge c q\\u 1$,我们感兴趣的是需要多少数据来保证观察者对$p\\u 1$的贝叶斯后验平均值很有可能超过$q\\u 1$的$(1-\\delta)c$倍。如果两个骰子的先验密度在参数空间内部为正,并且在边界处表现为幂函数,则对于每$\\ε>0,存在一个有限的$\\ N$,以便观察者在$\\ N$周期后获得这样的推断,每当$\\ np\\u 1\\ge N$时,概率至少为$\\ε$。n$和p\\u 1$的条件是最好的。如果一个先验密度在边界处以指数速度收敛到零,则结果可能失败。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
PDF下载:
-->
Bayesian_Posteriors_For_Arbitrarily_Rare_Events.pdf
(199.59 KB)


雷达卡



京公网安备 11010802022788号







