|
然而,M2.3和M3.1似乎捕捉了大多数经验数据趋势。表6和图12总结了参数估计。表6:SNP:基于ht和ht+1的SVMs参数M2.1 M2.2 M2.3 M3.1 M3.2 M3.3α-8.15-7.4083-8.19-8.23-7.64-8.1968(-8.33,-7.96)(-7.9995,-6.83)(-8.37,-8.00)(-8.39,-8.06)(-7.99,-7.31,-8.375,-8.016)σ0.2 0.1034 0.1652 0.2236 0.1069 0.19(0.12,0.28)(0.068,0.1448)(0.005,0.25)(0.13,0.34)(0.067,0.15)(0.007,0.31)φ0.93 0.9579 0.92 0.910.9675 0.91(0.87,0.98)(0.9264,0.99)(0.86,0.9738)(0.83,0.97)(0.94,0.99)(0.8268,0.9749)ρ-0.17-0.3785-0.2057-0.014-0.199 3.5×10-5(-0.38,0.035)-0.6357,-0.1355(-0.51,0.1021)-0.1956,0.16(-0.518,0.119)(-0.002,0.021)ν–6.75––6.44–(4.58,9.2)(4.51,9.06)λ–-0.005–-0.004–(-0.029,-0.002)(-0.06,0.05)π–0.0017––0.0016(3.6×10-5,0.0039)(3.48×10-5,0.0037)π–0.019–0.018(8.5×10-4,0.04)(7.6×10-4,0.041)(a)α(b)σ(c)对数(φ/(1-φ) )(d)ρ图12:SNP数据:基于第2节和第4节中所有模型的MCMC实现的α、σ、φ、ρ的后验分布。与前面的示例一样,除了M3.3.5.5结果讨论中的ρ值外,两类模型(即M2.j vs.M3.j)的共同参数α、σ、φ和ρ估计值是可比较的。我们现在讨论应用于所有六种支持向量机的所有四个示例的总体结果。尽管有一些有趣的观察结果,但以下是一些重要的评论:(1)所有参数估计表和箱线图都表明,当收益分布假定为偏态t时,ρ(Mi.2)>ρ(Mi.1),ρ(Mi.3),对于i=2和3。
|