英文标题:
《Target volatility option pricing in lognormal fractional SABR model》
---
作者:
Elisa Alos, Rupak Chatterjee, Sebastian Tudor, and Tai-Ho Wang
---
最新提交年份:
2018
---
英文摘要:
We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula by Ito\'s calculus yields a theoretical replicating strategy for the target volatility option, assuming the accessibilities of all variance swaps and swaptions. The same formula also suggests an approximation formula for the price of target volatility option in small time by the technique of freezing the coefficient. Alternatively, we also derive closed formed expressions for a small volatility of volatility expansion of the price of target volatility option. Numerical experiments show accuracy of the approximations in a reasonably wide range of parameters.
---
中文摘要:
本文研究了对数正态分数SABR模型中目标波动率期权的定价问题。伊藤演算的分解公式为目标波动率期权提供了一个理论复制策略,假设所有方差掉期和掉期期权的可获得性。该公式还通过冻结系数的方法,提出了一个小时间内目标波动率期权价格的近似公式。或者,我们还导出了目标波动率期权价格的波动率扩张的小波动率的闭合表达式。数值实验表明,在相当宽的参数范围内,近似值具有较高的精度。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







