英文标题:
《Pricing Options with Exponential Levy Neural Network》
---
作者:
Jeonggyu Huh
---
最新提交年份:
2018
---
英文摘要:
In this paper, we propose the exponential Levy neural network (ELNN) for option pricing, which is a new non-parametric exponential Levy model using artificial neural networks (ANN). The ELNN fully integrates the ANNs with the exponential Levy model, a conventional pricing model. So, the ELNN can improve ANN-based models to avoid several essential issues such as unacceptable outcomes and inconsistent pricing of over-the-counter products. Moreover, the ELNN is the first applicable non-parametric exponential Levy model by virtue of outstanding researches on optimization in the field of ANN. The existing non-parametric models are too vulnerable to be employed in practice. The empirical tests with S\\&P 500 option prices show that the ELNN outperforms two parametric models, the Merton and Kou models, in terms of fitting performance and stability of estimates.
---
中文摘要:
本文提出了用于期权定价的指数Levy神经网络(ELNN),它是一种新的基于人工神经网络(ANN)的非参数指数Levy模型。ELNN将人工神经网络与传统定价模型指数利维模型充分集成。因此,ELNN可以改进基于ANN的模型,以避免一些基本问题,例如不可接受的结果和非处方产品的定价不一致。此外,由于人工神经网络在优化方面的杰出研究,ELNN是第一个适用的非参数指数Levy模型。现有的非参数模型过于脆弱,难以应用于实际。对标准普尔500指数期权价格的实证检验表明,在拟合性能和估计稳定性方面,ELNN优于Merton和Kou两个参数模型。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







