英文标题:
《Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset
Correlations》
---
作者:
Andreas M\\\"uhlbacher and Thomas Guhr
---
最新提交年份:
2018
---
英文摘要:
We review recent progress in modeling credit risk for correlated assets. We start from the Merton model which default events and losses are derived from the asset values at maturity. To estimate the time development of the asset values, the stock prices are used whose correlations have a strong impact on the loss distribution, particularly on its tails. These correlations are non-stationary which also influences the tails. We account for the asset fluctuations by averaging over an ensemble of random matrices that models the truly existing set of measured correlation matrices. As a most welcome side effect, this approach drastically reduces the parameter dependence of the loss distribution, allowing us to obtain very explicit results which show quantitatively that the heavy tails prevail over diversification benefits even for small correlations. We calibrate our random matrix model with market data and show how it is capable of grasping different market situations. Furthermore, we present numerical simulations for concurrent portfolio risks, i.e., for the joint probability densities of losses for two portfolios. For the convenience of the reader, we give an introduction to the Wishart random matrix model.
---
中文摘要:
我们回顾了相关资产信用风险建模的最新进展。我们从默顿模型开始,该模型的违约事件和损失源自到期时的资产价值。为了估计资产价值的时间发展,使用了股票价格,股票价格的相关性对损失分布,尤其是尾部的损失分布有很大影响。这些相关性是非平稳的,这也会影响尾部。我们通过对一组随机矩阵进行平均来解释资产波动,这些随机矩阵对真实存在的一组测量相关矩阵进行建模。作为一个最受欢迎的副作用,这种方法极大地降低了损失分布的参数依赖性,使我们能够获得非常明确的结果,从数量上表明,即使相关性很小,重尾也优于多样化收益。我们用市场数据校准了我们的随机矩阵模型,并展示了它如何能够把握不同的市场情况。此外,我们还对并行投资组合风险进行了数值模拟,即两个投资组合的损失联合概率密度。为了方便读者,我们介绍了Wishart随机矩阵模型。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->


雷达卡



京公网安备 11010802022788号







