《Trading algorithms with learning in latent alpha models》
---
作者:
Philippe Casgrain, Sebastian Jaimungal
---
最新提交年份:
2018
---
英文摘要:
Alpha signals for statistical arbitrage strategies are often driven by latent factors. This paper analyses how to optimally trade with latent factors that cause prices to jump and diffuse. Moreover, we account for the effect of the trader\'s actions on quoted prices and the prices they receive from trading. Under fairly general assumptions, we demonstrate how the trader can learn the posterior distribution over the latent states, and explicitly solve the latent optimal trading problem. We provide a verification theorem, and a methodology for calibrating the model by deriving a variation of the expectation-maximization algorithm. To illustrate the efficacy of the optimal strategy, we demonstrate its performance through simulations and compare it to strategies which ignore learning in the latent factors. We also provide calibration results for a particular model using Intel Corporation stock as an example.
---
中文摘要:
统计套利策略的阿尔法信号通常由潜在因素驱动。本文分析了如何与导致价格跳跃和扩散的潜在因素进行最优交易。此外,我们还考虑了交易员行为对报价的影响以及他们从交易中获得的价格。在相当一般的假设下,我们证明了交易者如何学习潜在状态的后验分布,并显式地解决潜在最优交易问题。我们提供了一个验证定理,以及通过推导期望最大化算法的变化来校准模型的方法。为了说明最优策略的有效性,我们通过仿真验证了其性能,并将其与忽略潜在因素学习的策略进行了比较。我们还以英特尔公司股票为例,提供了特定模型的校准结果。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->
Trading_algorithms_with_learning_in_latent_alpha_models.pdf
(2.71 MB)


雷达卡



京公网安备 11010802022788号







