《Parameter Estimation of Heavy-Tailed AR Model with Missing Data via
Stochastic EM》
---
作者:
Junyan Liu, Sandeep Kumar, and Daniel P. Palomar
---
最新提交年份:
2019
---
英文摘要:
The autoregressive (AR) model is a widely used model to understand time series data. Traditionally, the innovation noise of the AR is modeled as Gaussian. However, many time series applications, for example, financial time series data, are non-Gaussian, therefore, the AR model with more general heavy-tailed innovations is preferred. Another issue that frequently occurs in time series is missing values, due to system data record failure or unexpected data loss. Although there are numerous works about Gaussian AR time series with missing values, as far as we know, there does not exist any work addressing the issue of missing data for the heavy-tailed AR model. In this paper, we consider this issue for the first time, and propose an efficient framework for parameter estimation from incomplete heavy-tailed time series based on a stochastic approximation expectation maximization (SAEM) coupled with a Markov Chain Monte Carlo (MCMC) procedure. The proposed algorithm is computationally cheap and easy to implement. The convergence of the proposed algorithm to a stationary point of the observed data likelihood is rigorously proved. Extensive simulations and real datasets analyses demonstrate the efficacy of the proposed framework.
---
中文摘要:
自回归(AR)模型是一种广泛用于理解时间序列数据的模型。传统上,AR的新息噪声被建模为高斯噪声。然而,许多时间序列应用,例如金融时间序列数据,都是非高斯的,因此,具有更一般的重尾创新的AR模型是首选。时间序列中经常出现的另一个问题是由于系统数据记录失败或意外数据丢失而丢失值。虽然有许多关于缺失值高斯AR时间序列的工作,但据我们所知,没有任何工作解决重尾AR模型的缺失数据问题。本文首次考虑了这一问题,提出了一种基于随机近似期望最大化(SAEM)和马尔可夫链蒙特卡罗(MCMC)过程的不完全重尾时间序列参数估计的有效框架。该算法计算量小,易于实现。严格证明了该算法收敛于观测数据似然的平稳点。大量的仿真和实际数据集分析证明了该框架的有效性。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term \"signal\" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->
Parameter_Estimation_of_Heavy-Tailed_AR_Model_with_Missing_Data_via_Stochastic_EM.pdf
(504.83 KB)


雷达卡



京公网安备 11010802022788号







