《Continual Learning Augmented Investment Decisions》
---
作者:
Daniel Philps, Tillman Weyde, Artur d\'Avila Garcez, Roy Batchelor
---
最新提交年份:
2019
---
英文摘要:
Investment decisions can benefit from incorporating an accumulated knowledge of the past to drive future decision making. We introduce Continual Learning Augmentation (CLA) which is based on an explicit memory structure and a feed forward neural network (FFNN) base model and used to drive long term financial investment decisions. We demonstrate that our approach improves accuracy in investment decision making while memory is addressed in an explainable way. Our approach introduces novel remember cues, consisting of empirically learned change points in the absolute error series of the FFNN. Memory recall is also novel, with contextual similarity assessed over time by sampling distances using dynamic time warping (DTW). We demonstrate the benefits of our approach by using it in an expected return forecasting task to drive investment decisions. In an investment simulation in a broad international equity universe between 2003-2017, our approach significantly outperforms FFNN base models. We also illustrate how CLA\'s memory addressing works in practice, using a worked example to demonstrate the explainability of our approach.
---
中文摘要:
投资决策可以受益于结合过去积累的知识来推动未来的决策。我们引入了基于显式记忆结构和前馈神经网络(FFNN)基础模型的连续学习增强(CLA),用于驱动长期金融投资决策。我们证明,我们的方法提高了投资决策的准确性,同时以一种可解释的方式解决了内存问题。我们的方法引入了新的记忆线索,由FFNN绝对误差序列中经验学习到的变化点组成。记忆回忆也很新颖,通过使用动态时间扭曲(DTW)的采样距离来评估随时间变化的上下文相似性。我们通过在预期回报预测任务中使用该方法来推动投资决策,从而证明了该方法的好处。在2003-2017年广泛的国际股权领域的投资模拟中,我们的方法明显优于FFNN基础模型。我们还说明了CLA的内存寻址在实践中是如何工作的,并使用一个工作示例演示了我们的方法的可解释性。
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Statistics 统计学
二级分类:Machine Learning 机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
PDF下载:
-->
Continual_Learning_Augmented_Investment_Decisions.pdf
(799.54 KB)


雷达卡



京公网安备 11010802022788号







