量化交易開发:是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
量化交易机器人优点:
1、克服人性的弱点:没有贪婪和恐惧,纪律性强、严格执行投资策略,不受投资者情绪的变化而随意更改。
2、模型的系统性:多层次的量化模型、多角度的观察及海量数据的处理,结合大数据处理技术捕捉至刂更多的投资机会。
3、及时、快速、准确:及时快速地跟踪市场变化,不断发现能够超额收益的新的统计模型,寻找新的交易机会。并且保证下单的准确无误,这是主观交易无法相提并论的。
量化交易就是把资金交给一个机器人,然后你把你的策略设定,他就按照你的来进行购买和出售货币。
策略一、仓位马丁策略(比较常见的策略)
在量化交易中最常用的方法就是利用网格交易法,在亏损的交易中通过仓位的加备来实现。仓位分布1,2,4,8,16…。
缺点:是在趋势行情中,最终的建仓数量会非常大。如果浮动亏损超过本金就会爆仓。
量化投资策略
量化投资策略是基于大数据基础上,利用统计学、数学、信息技术、人工智能等方法取代人工作出决策,通过模型完成股票交易来构建投资组合。
相对于人为主观投资,量化投资策略的最大特点是其具有一套基于数据的完整交易规则。
在投资决策的所有环节,根据设定好的客观量化标准,严格贯彻执行,比如,根据自己已经持有的A股票,等到A股票的横指标达到多少的阈值时,才可以开仓,以及每次开仓要买卖多少手等交易规则。
双均线策略
# 导入函数库
from jqdata import *
# 初始化函数,设定基准等等
def initialize(context):
# 设定沪深300作为基准
set_benchmark('000300.XSHG')
# 开启动态复权模式(真实价格)
set_option('use_real_price', True)
# 输出内容到日志 log.info()
log.info('初始函数开始运行且全局只运行一次')
# 过滤掉order系列API产生的比error级别低的log
# log.set_level('order', 'error')
### 股票相关设定 ###
# 股票类每笔交易时的手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
set_order_cost(OrderCost(close_tax=0.001, open_commission=0.0003, close_commission=0.0003, min_commission=5), type='stock')
## 运行函数(reference_security为运行时间的参考标的;传入的标的只做种类区分,因此传入'000300.XSHG'或'510300.XSHG'是一样的)
# 开盘前运行
run_daily(before_market_open, time='before_open', reference_security='000300.XSHG')
# 开盘时运行
run_daily(market_open, time='open', reference_security='000300.XSHG')
# 收盘后运行
run_daily(after_market_close, time='after_close', reference_security='000300.XSHG')
## 开盘前运行函数
def before_market_open(context):
# 输出运行时间
log.info('函数运行时间(before_market_open):'+str(context.current_dt.time()))
# 给微信发送消息(添加模拟交易,并绑定微信生效)
# send_message('美好的一天~')
# 要操作的股票:宏达股份(g.为全局变量)
g.security = '600331.XSHG'
## 开盘时运行函数
def market_open(context):
log.info('函数运行时间(market_open):'+str(context.current_dt.time()))
security = g.security
# 获取股票的收盘价
close_data = get_bars(security, count=5, unit='1d', fields=['close'])
# 取得过去五天的平均价格
MA5 = close_data['close'].mean()
# 取得上一时间点价格
current_price = close_data['close'][-1]
# 取得当前的现金
cash = context.portfolio.available_cash
# 如果上一时间点价格高出五天平均价1%, 则全仓买入
if (current_price > 1.01*MA5) and (cash > 0):
# 记录这次买入
log.info("价格高于均价 1%%, 买入 %s" % (security))
print("当前可用资金为{0}, position_value为{0}".format(cash, context.portfolio.positions_value))
# 用所有 cash 买入股票
order_value(security, cash)
# 如果上一时间点价格低于五天平均价, 则空仓卖出
elif current_price < MA5 and context.portfolio.positions[security].closeable_amount > 0:
# 记录这次卖出
log.info("价格低于均价, 卖出 %s" % (security))
# 卖出所有股票,使这只股票的最终持有量为0
order_target(security, 0)
## 收盘后运行函数
def after_market_close(context):
log.info(str('函数运行时间(after_market_close):'+str(context.current_dt.time())))
#得到当天所有成交记录
trades = get_trades()
for _trade in trades.values():
log.info('成交记录:'+str(_trade))
log.info('一天结束')
log.info('##############################################################')
均线最早由美国投资专家Joseph E.Granville(格兰威尔)于20世纪中期提出,现在仍然广泛为人们使用,成为判断买卖信号的一大重要指标。从统计角度来说,均线就是历史价格的平均值,可以代表过去N日股价的平均走势。


雷达卡


京公网安备 11010802022788号







