Correlation of y and x
Variance of input = 1463.115
Number of Observations 23
09:26 Sunday, July 18, 2011 5
The ARIMA Procedure
Crosscorrelations
Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
-5 23769.269 0.17087 | . |*** . |
-4 32323.798 0.23236 | . |***** . |
-3 49582.091 0.35642 | . |*******. |
-2 69256.129 0.49785 | . |********** |
-1 90824.964 0.65290 | . |************* |
0 116493 0.83741 | . |***************** |
1 94296.098 0.67785 | . |************** |
2 71768.333 0.51591 | . |********** |
3 52968.991 0.38077 | . |******** |
4 36039.380 0.25907 | . |***** . |
5 23850.579 0.17145 | . |*** . |
"." marks two standard errors
Conditional Least Squares Estimation
Standard Approx
Parameter Estimate Error t Value Pr > |t| Lag Variable Shift
MU -14135.4 4836.9 -2.92 0.0081 0 y 0
NUM1 79.62002 11.34016 7.02 <.0001 0 x 0
Constant Estimate -14135.4
Variance Estimate 4327575
Std Error Estimate 2080.283
AIC 418.6307
SBC 420.9017
Number of Residuals 23
* AIC and SBC do not include log determinant.
Correlations of Parameter Estimates
Variable y x
Parameter MU NUM1
y MU 1.000 -0.996
x NUM1 -0.996 1.000
09:26 Sunday, July 18, 2011 6
The ARIMA Procedure
Autocorrelation Check of Residuals
To Chi- Pr >
Lag Square DF ChiSq --------------------Autocorrelations--------------------
6 9.12 6 0.1670 0.440 0.043 -0.005 -0.095 -0.208 -0.264
12 15.47 12 0.2169 -0.115 -0.113 -0.123 -0.240 -0.163 -0.134
18 26.68 18 0.0851 -0.050 0.065 0.123 0.293 0.165 0.016
Autocorrelation Plot of Residuals
Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error
0 4327575 1.00000 | |********************| 0
1 1904251 0.44003 | . |********* | 0.208514
2 186048 0.04299 | . |* . | 0.245591
3 -21484.611 -.00496 | . | . | 0.245918
4 -410964 -.09496 | . **| . | 0.245923
5 -900754 -.20814 | . ****| . | 0.247512
"." marks two standard errors
Inverse Autocorrelations
Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 -0.49456 | **********| . |
2 0.21924 | . |**** . |
3 -0.09044 | . **| . |
4 0.00447 | . | . |
5 0.09581 | . |** . |
Partial Autocorrelations
Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.44003 | . |********* |
2 -0.18680 | . ****| . |
3 0.07039 | . |* . |
4 -0.14679 | . ***| . |
5 -0.13120 | . ***| . |
Model for variable y
Estimated Intercept -14135.4
09:26 Sunday, July 18, 2011 7
The ARIMA Procedure
Input Number 1
Input Variable x
Overall Regression Factor 79.62002
09:26 Sunday, July 18, 2011 8
The ARIMA Procedure
Name of Variable = RESIDUAL
Mean of Working Series -1.04E-9
Standard Deviation 1987.779
Number of Observations 23
Autocorrelations
Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error
0 3951265 1.00000 | |********************| 0
1 1738664 0.44003 | . |********* | 0.208514
2 169870 0.04299 | . |* . | 0.245591
3 -19616.384 -.00496 | . | . | 0.245918
4 -375228 -.09496 | . **| . | 0.245923
5 -822428 -.20814 | . ****| . | 0.247512
"." marks two standard errors
Inverse Autocorrelations
Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 -0.49456 | **********| . |
2 0.21924 | . |**** . |
3 -0.09044 | . **| . |
4 0.00447 | . | . |
5 0.09581 | . |** . |
Partial Autocorrelations
Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.44003 | . |********* |
2 -0.18680 | . ****| . |
3 0.07039 | . |* . |
4 -0.14679 | . ***| . |
5 -0.13120 | . ***| . |
09:26 Sunday, July 18, 2011 9
The ARIMA Procedure
Augmented Dickey-Fuller Unit Root Tests
Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F
Zero Mean 0 -11.4610 0.0111 -2.61 0.0115
1 -16.8960 0.0011 -2.62 0.0115
2 -12.4162 0.0071 -1.87 0.0600
Single Mean 0 -11.3726 0.0582 -2.53 0.1221 3.31 0.2867
1 -16.6566 0.0076 -2.53 0.1235 3.29 0.2916
2 -12.0525 0.0428 -1.78 0.3786 1.69 0.6613
Trend 0 -11.4295 0.2460 -2.45 0.3450 3.04 0.6006
1 -17.3470 0.0408 -2.45 0.3449 3.07 0.5967
2 -13.2258 0.1462 -1.69 0.7171 1.52 0.8660


雷达卡




京公网安备 11010802022788号







