epoh 发表于 2012-1-7 18:45 
对对,我笔误了
我意思是对C1,C2的wald test
也就是CHISQ(1) = 12.079798
恩,epoh老师,这正是我想问的问题,也是下午短信息里面问您的问题
比如您看这个结果:
Wald Test for the Hypothesis that the given set of Parameters are jointly zero:
CHISQ(2) = 5.0820414 ; P-value = 0.07879
从P-value = 0.07879显示是在90%下显著(因为0.07879>0.05且<0.01)
然而,从后面的CDFWALD 1-100个数值来看,第一个地区对应的第90个是
90
31.60622 (这个完整结果在短信息里面有)
CDFWALD
1 2 3 4 5
1 0.030955 0.15930 0.27762 0.086290 0.00000
2 0.19009 0.25981 0.50553 0.14964 0.00000
.....
90
31.60622 25.98711 34.55176 23.53901 0.00000
91 32.42308 28.22461 34.74655 24.71901 0.00000
92 38.00229 28.33852 36.65796 24.86017 0.00000
93 43.94983 28.64702 40.39545 28.35431 0.00000
94 45.84359 31.45108 40.64175 35.84975 0.00000
95 54.10173 31.94527 42.41991 41.25981 0.00000
96 58.13348 39.17221 42.46491 45.36430 0.00000
97 82.72300 45.31820 44.06596 47.04643 0.00000
98 85.09639 47.92266 44.79910 47.17659 0.00000
99 97.18227 49.85334 51.20124 53.58117 0.00000
100 137.84399 78.81898 52.12718 68.00179 0.00000
可以看出CHISQ(2) = 5.0820414 并未大于31.60622
那应该是不能拒绝原假设,这和P-value = 0.07879 在10%水平下拒绝原假设矛盾了