解
(1)由已知,有\[\frac{\partial P(x,y)}{\partial y}=\frac{2kxy^2(x^2+y^2)^{k-1}-x(x^2+y^2)^{k}}{y^2},\]\[\frac{\partial Q(x,y)}{\partial x}=-\frac{2x(x^2+y^2)^{k}+2kx^3(x^2+y^2)^{k-1}}{y^2}.\]
若积分与路径无关,则必须\[\frac{\partial P(x,y)}{\partial y}=\frac{\partial Q(x,y)}{\partial x}.\] \[\therefore k=-\frac{1}{2}.\]
(2)由上面的结论,得\[P(x,y)=\frac{x}{y\sqrt{x^2+y^2}},Q(x,y)=-\frac{x^2}{y^2\sqrt{x^2+y^2}},\]\[df(x,y)=\frac{\sqrt{x^2+y^2}}{y}(dx+dy),\]\[\therefore f(x,y)=\frac{\sqrt{x^2+y^2}}{y}.\]
由于积分与路径无关,因此可选简便路径计算\[\begin{align*}I
&=\int_{(1,2)}^{(3,4)}\frac{\sqrt{x^2+y^2}}{y}(dx+dy) \\
&=\int_{(1,2)}^{(3,2)}\frac{\sqrt{x^2+y^2}}{y}(dx+dy)+\int_{(3,2)}^{(3,4)}\frac{\sqrt{x^2+y^2}}{y}(dx+dy) \\
&= \int_{1}^{3}\frac{\sqrt{x^2+4}}{2}dx+\int_{2}^{4}\frac{\sqrt{9+y^2}}{y}dy\\
&=\frac{1}{2}[\frac{x}{2}\sqrt{x^2+4}+2\ln(x+\sqrt{x^2+4})]_1^3+\int_{2}^{4}\frac{\sqrt{9+y^2}}{y}dy\\
&=\frac{1}{2}[\frac{x}{2}\sqrt{x^2+4}+2\ln(x+\sqrt{x^2+4})]_1^3+[\sqrt{9+y^2}-3\ln\frac{3+\sqrt{9+y^2}}{y}]_2^4
\end{align*}\]