解 用夹逼法\[\because \frac{1}{n\sqrt{2+\frac{1}{n^2}}}< \frac{1}{\sqrt{2n^2+k}}< \frac{1}{n\sqrt{2+\frac{1}{n}}},\]\[ \frac{n}{n\sqrt{2+\frac{1}{n^2}}}<\frac{1}{\sqrt{2n^2+1}}+\frac{1}{\sqrt{2n^2+2}}+\cdots +\frac{1}{\sqrt{2n^2+n}}< \frac{n}{n\sqrt{2+\frac{1}{n}}}.\]\[\therefore \lim_{n\to\infty }(\frac{1}{\sqrt{2n^2+1}}+\frac{1}{\sqrt{2n^2+2}}+\cdots +\frac{1}{\sqrt{2n^2+n}})=\frac{\sqrt{2}}{2}.\]


雷达卡
京公网安备 11010802022788号







