解\[令r=\sqrt{a^2+b^2+c^2}.进行正交变换(x,y,z)\rightarrow (u,v,w).\]\[u=\frac{1}{r}(ax+by+cz).\Sigma :x^2+y^2+z^2=1,\rightarrow \Sigma ':u^2+v^2+w^2=1.\]\[v^2+w^2=1-u^2,v=\sqrt{1-u^2}\cos \theta ,w=\sqrt{1-u^2}\sin \theta.\]\[-1\le u\le 1,0\le \theta \le 2\pi.\]\[E=\frac{1}{1-u^2},F=0,G=1-u^2.\]\[dS=\sqrt{EG-F}dud\theta =dud\theta.\]\[\begin{align*}\therefore \iint\limits_{\Sigma }f(ax+by+cz)dS
&=\iint\limits_{\Sigma }f(ru)dS \\
&=\int_{0}^{2\pi} d\theta \int_{-1}^{1}f(\sqrt{a^2+b^2+c^2}u)du\\
&=2\pi \int_{-1}^{1}f(\sqrt{a^2+b^2+c^2}u)du.
\end{align*}\]


雷达卡
京公网安备 11010802022788号







