cod.txt
(85.82 KB)
model {
for (i in 1:N) {Y ~ dbern(p)
logit(p) <- beta0+beta1*x1+beta2*x2+beta3*x3+beta4*x4+beta5*x5+beta6*x6+beta7*x7+beta8*x8+beta9*x9+beta10*x10+beta11*x11+ U +S
eta <- S+U
U ~ dnorm(0.0,prec.u)
}
S[1:N] ~ car.normal(adj[], weights[], num[], prec.s)
for(k in 1:sumNumNeigh) {weights[k] <- 1 }
#priors for regression
beta0 ~ dflat()
beta1 ~ dnorm(0.0,0.1)
beta2 ~ dnorm(0.0,0.1)
beta3 ~ dnorm(0.0,0.1)
beta4 ~ dnorm(0.0,0.1)
beta5 ~ dnorm(0.0,0.1)
beta6 ~ dnorm(0.0,0.1)
beta7 ~ dnorm(0.0,0.1)
beta8 ~ dnorm(0.0,0.1)
beta9 ~ dnorm(0.0,0.1)
beta10 ~ dnorm(0.0,0.1)
beta11 ~ dnorm(0.0,0.1)
prec.u ~ dgamma(0.02,0.02) #prior unstructured precision
prec.s ~ dgamma(0.02,0.02) #prior spatial precision
}


雷达卡




京公网安备 11010802022788号







