楼主: jinlingwang
2022 0

Number Fields and Function Fields [推广有奖]

  • 0关注
  • 3粉丝

已卖:2690份资源

讲师

85%

还不是VIP/贵宾

-

威望
0
论坛币
136935 个
通用积分
60.5331
学术水平
6 点
热心指数
9 点
信用等级
2 点
经验
6648 点
帖子
334
精华
0
在线时间
186 小时
注册时间
2007-7-27
最后登录
2022-8-10

楼主
jinlingwang 发表于 2007-7-28 13:10:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

[UseMoney=20] 142079.pdf (22.77 MB, 需要: 20 个论坛币)


[/UseMoney]

Number Fields and Function Fields: Two Parallel Worlds (Progress in Mathematics)

Publisher: Birkhäuser Boston
Number Of Pages: 318
Publication Date: 2005-09-14
Sales Rank: 2290854
ISBN / ASIN: 0817643974
EAN: 9780817643973
Binding: Hardcover
Manufacturer: Birkhäuser Boston
Studio: Birkhäuser Boston


Ever since the analogy between number fields and function fields was discovered, it has been a source of inspiration for new ideas, and a long history has not in any way detracted from the appeal of the subject.

As a deeper understanding of this analogy could have tremendous consequences, the search for a unified approach has become a sort of Holy Grail. The arrival of Arakelov's new geometry that tries to put the archimedean places on a par with the finite ones gave a new impetus and led to spectacular success in Faltings' hands. There are numerous further examples where ideas or techniques from the more geometrically-oriented world of function fields have led to new insights in the more arithmetically-oriented world of number fields, or vice versa.

These invited articles by leading researchers in the field explore various aspects of the parallel worlds of function fields and number fields. Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives.

This volume is aimed at a wide audience of graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections.

Contributors: G. Böckle; T. van den Bogaart; H. Brenner; F. Breuer; K. Conrad; A. Deitmar; C. Deninger; B. Edixhoven; G. Faltings; U. Hartl; R. de Jong; K. Köhler; U. Kühn; J.C. Lagarias; V. Maillot; R. Pink; D. Roessler; and A. Werner.

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:function fields Number field CTI function Number fields

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-24 19:01