楼主: jinye992010
3394 6

[问答] 在复杂抽样分析下选择最佳模型 [推广有奖]

  • 0关注
  • 0粉丝

大专生

41%

还不是VIP/贵宾

-

威望
0
论坛币
877 个
通用积分
7.5361
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
779 点
帖子
13
精华
0
在线时间
71 小时
注册时间
2013-5-19
最后登录
2024-7-21

楼主
jinye992010 发表于 2013-5-19 20:39:58 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
我是一个新手,请问我用svyset了复杂抽样变量,在做线形回归模型的时候怎么可以选择最佳模型呢?没有svyset的时候可以看adjusted R-square的大小,用了svyset,就没有R-square了,怎么比呢?用AIC和BIC么?怎么做呢?能告诉我命令是什么么?

非常感谢!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:抽样分析 复杂抽样 adjusted Square adjust adjusted 模型

沙发
ReneeBK 发表于 2014-3-29 08:36:14
Is svyset a SPSS's command?

藤椅
ReneeBK 发表于 2014-3-29 10:58:25

SAS® Model Selection Macros for Complex Survey Data Using PROC SURVEYLOGISTIC/SURVEYREG



ABSTRACT
Regression model selection is widely used in analyzing survey data. In SAS 9.1, Proc Surveylogistic and Proc Surveyreg were developed for analyzing data from complex surveys (stratified and/or clustered surveys). But neither of them has the capacity of automated model selection. “Manual” coding for each specific task would be time-consuming and very labor intensive. This paper details two major macros to perform automated forward, backward and stepwise model selection for complex survey data: %StepSvylog for logistic regression using Proc Surveylogistic, and %StepSvyreg for linear regression using Proc Surveyreg.


http://www.mwsug.org/proceedings/2011/stats/MWSUG-2011-SA02.pdf

板凳
ReneeBK 发表于 2014-3-29 11:13:48
Multilevel Modeling of Complex Survey Data
Tihomir Asparouhov1
, Bengt Muthen2
Muthen & Muthen1
University of California, Los Angeles

http://www.statmodel.com/download/SurveyJSM1.pdf

报纸
ReneeBK 发表于 2014-3-29 11:37:27

Model Selection for Incomplete and Design-Based Samples: An Application to Cervix Cancer Screening



AbstractThe Akaike Information Criterion, AIC, is one of the most frequently used methods to select one or a few good, optimal regression models from a set of candidate models. In case the sample is incomplete, the naive use of this criterion on the so-called complete cases can lead to the selection of poor or inappropriate models. A similar problem occurs when a sample based on a design with unequal selection probabilities, is treated as a simple random sample. In this paper we consider a modification of AIC, based on reweighing the sample in analogy with the weighted Horvitz-Thompson estimates. It is shown that this weighted AIC-criterion provides better model choices for both incomplete and design-based samples. The use of the weighted AIC-criterion is illustrated on data from the Belgian Health Interview Survey, which motivated this research. Simulations show its performance in a variety of settings.
http://missingdata.lshtm.ac.uk/preprints/hens_et_al_v2.pdf

地板
碧落侍郎 发表于 2014-3-30 00:14:36
这个不是stata的么。。。

7
gxnnhsd 发表于 2014-11-29 23:25:45
好好有学问啊

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-25 07:32