楼主: 心若睡了
936 3

[经济] 期权定价 无套利 的问题请教各位高手~ [推广有奖]

  • 0关注
  • 0粉丝

高中生

25%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
443 点
帖子
22
精华
0
在线时间
3 小时
注册时间
2010-9-29
最后登录
2013-6-25

楼主
心若睡了 发表于 2013-6-23 14:39:53 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
When we assume a perfect market and no arbitrage opportunities, we can find some relationships between option prices that do not require any assumptions about volatility and the probabilistic behaviour of stock prices.

(a) Explain the arbitrage restrictions on option price with respect to its underlying asset price and the payoffs at the maturity. How these restrictions can be used to derive the Black-Scholes option pricing formula?

(b) Show the following relationship is true;
i) C(S,T1,E) > C(S,T2,E) where T1 > T2, and
ii) C(S,T,E1) > C(S,T,E2) where E1 < E2,
where C is an American call option, S is the stock price, T is the time to maturity and E is the exercise price.

(c) Suppose the following three options for the same underlying asset (S) with the same time-to-maturity (T), but with different exercise prices: C(S,T,E1), C(S,T,E2) and C(S,T,E3) where E2=(E1+E3)/2 and E3<E2<E1. Demonstrate that C(S,T,E1)+C(S,T,E3) > 2C(S,T,E2) and explain the implication of this boundary condition.




主要是(b)和(c)想请教一下各位大师~

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:期权定价 无套利 relationship Restrictions restriction following perfect between require respect

沙发
心若睡了 发表于 2013-6-23 15:00:16
请教各位了~

藤椅
心若睡了 发表于 2013-6-23 15:02:36
这部分不是很明白~请教大师们啊~

板凳
心若睡了 发表于 2013-6-24 09:54:15
大师们~~帮小妹解答一下下~

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 05:53