根据柯布—道格拉斯(Cobb-Douglas)生产函数进行回归计算,可以得出新增加值中的劳动力贡献率与资本贡献率。
柯布—道格拉斯生产函数:
其中,Y表示产量,L表示劳动要素投入,K表示资本要素投入, 和 分别表示产出相对于劳动投入的弹性和资本投入的弹性。
对上式作对数变换,可得:
运用表1中1990-2011年上海市工业企业劳动工资和资本支出以及总产值的数据,可以分别回归出劳动要素和资本要素的贡献率。
年份 | 工资总额L | 投资总额K | 总产值Y |
1990 | 146.78 | 227.08 | 781.66 |
1991 | 172.84 | 258.3 | 893.77 |
1992 | 217.21 | 357.38 | 1114.32 |
1993 | 279.33 | 653.91 | 1519.23 |
1994 | 357.89 | 1123.29 | 1990.86 |
1995 | 440.75 | 1601.79 | 2499.43 |
1996 | 492.7 | 1952.05 | 2957.55 |
1997 | 510.1 | 1977.59 | 3438.79 |
1998 | 510.35 | 1964.83 | 3801.09 |
1999 | 583.54 | 1856.72 | 4188.73 |
2000 | 614.53 | 1869.67 | 4771.17 |
2001 | 678.29 | 1994.73 | 5210.12 |
2002 | 733.31 | 2187.06 | 5741.03 |
2003 | 803.84 | 2452.11 | 6694.23 |
2004 | 837.39 | 3084.66 | 8072.83 |
2005 | 1146.97 | 3542.55 | 9247.66 |
2006 | 1475.93 | 3925.09 | 10572.24 |
2007 | 1802.17 | 4458.61 | 12494.01 |
2008 | 2184.2 | 4829.45 | 14069.87 |
2009 | 2594.2 | 5273.33 | 15046.45 |
2010 | 3018.55203 | 5317.67 | 17165.98 |
2011 | 4505.57028 | 5067.09 | 19195.69 |
用eview 拟合之后得到如下结果。
Dependent Variable: LOG(Y) |
|
| ||
Method: Least Squares |
|
| ||
Date: 06/24/13 Time: 12:06 |
|
| ||
Sample: 1990 2011 |
|
| ||
Included observations: 22 |
|
| ||
|
|
|
|
|
|
|
|
|
|
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
|
|
|
|
|
|
|
|
|
|
C | 1.183420 | 0.250394 | 4.726235 | 0.0001 |
LOG(K) | 0.415916 | 0.087959 | 4.728507 | 0.0001 |
LOG(L) | 0.628504 | 0.089520 | 7.020781 | 0.0000 |
|
|
|
|
|
|
|
|
|
|
R-squared | 0.980513 | Mean dependent var | 8.456429 | |
Adjusted R-squared | 0.978461 | S.D. dependent var | 0.965631 | |
S.E. of regression | 0.141716 | Akaike info criterion | -0.943853 | |
Sum squared resid | 0.381587 | Schwarz criterion | -0.795075 | |
Log likelihood | 13.38239 | F-statistic | 477.9963 | |
Durbin-Watson stat | 0.297047 | Prob(F-statistic) | 0.000000 | |
|
|
|
|
|
杜宾检验, 存在自相关 |
|
|
|
|
Dependent Variable: LOG(Y)-0.86527*LOG(Y(-1)) | ||||
Method: Least Squares |
|
| ||
Date: 06/24/13 Time: 11:57 |
|
| ||
Sample (adjusted): 1991 2011 |
|
| ||
Included observations: 21 after adjustments |
| |||
|
|
|
|
|
|
|
|
|
|
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
|
|
|
|
|
|
|
|
|
|
C | 0.580225 | 0.117604 | 4.933730 | 0.0001 |
LOG(K)-0.86527*LOG(K(-1)) | 0.214238 | 0.097381 | 2.199985 | 0.0411 |
LOG(L)-0.86527*LOG(L(-1)) | 0.437778 | 0.081086 | 5.398945 | 0.0000 |
|
|
|
|
|
|
|
|
|
|
R-squared | 0.720568 | Mean dependent var | 1.282744 | |
Adjusted R-squared | 0.689520 | S.D. dependent var | 0.101868 | |
S.E. of regression | 0.056762 | Akaike info criterion | -2.768348 | |
Sum squared resid | 0.057994 | Schwarz criterion | -2.619131 | |
Log likelihood | 32.06766 | F-statistic | 23.20817 | |
Durbin-Watson stat | 1.109632 | Prob(F-statistic) | 0.000010 | |
|
|
|
|
|
在倒戈拉斯生产函数中 , K的贡献率和L的贡献率之和要等1,很显然0.214238+0.437778不等于1,请问这种在经济学的含义如何解释,为什么会不等于1. |
|
|
|
|


雷达卡





京公网安备 11010802022788号







