高山晟那本《经济学中的分析方法》倒是不错,但我一直没搞明白这本书的目标读者是谁?或者换句话说,我不明白他在写出了《Mathematical Economics》(1985年第二版,不清楚继续更新了没有)之后,为什么又搞了这本书出来?前者在绝大部分地方不过是后者的缩写,书中随处可见“请参考takayama 1985”字样。这本书初学者肯定看着不舒服,太简捷了,而且内容不少。如果想买人大那版中文的话,实在不如到总院借来后者的英文原版复印一下。
其实实在想“速成”以跟上微观的进度的话,最快可能是去读Jehle & Reny <Advanced Microeconomic Theory> (Second Edition)那一百多页纸的数学附录,是高微教材里附录写得最好的一本(准确的说,最“人性化”的, 呵呵, Varian 太爱惜笔墨, MWG“过分”严格,Krep有特点,花了寥寥数页搞定了constrained optimization, 平地里蹦出一章动态规划来,嘿嘿)。
如果你实在想急于“搞定”凹性和优化知识的话,Dixit的《optimization in economic theory》写得不错,薄薄的小册子,一周内肯定读完,经济含义丰富,内容简单明了。本书研院图书馆有两本。如果再想系统化的严格一下,Madden 《Concavity and Optimization in Microeconomics》是个理想选择,从最简单的一元函数、凹性、无限制优化讲起,然后加入一个约束,两个约束,多个约束,严格凹性,拟凹登场,直到解得存在性,可微性,唯一性。。。。。。一本书完了,直观感觉,数学严格性和经济含义兼备。当年我比较笨,数学基础差,这本书完完整整抄了一遍,后来讲微观习题课很多内容要感谢这本书。总院馆有。
罗嗦了一堆,不说了。
二、说说数学分析和实变函数(不敢叫实分析,呵呵)
进入这个题目我有点胆战心惊,估计能做到野人献曝就不错了,写出来的全是垃圾也是很可能的,呵呵。原因有二:一是这方面内容自己虽然下过很大功夫,但总觉得不是那么得心应手,总觉得隔着点儿什么,还是功夫不够。二是自己曾花了很长时间犹豫要不要下很大很大功夫学这些东西,因为初学好像和经济学不靠边儿,不过终于还是下功夫了,确实感觉必不可少,另外确实很有趣。
古龙《萧十一郎》里有个人叫杨开泰,我印象很深,倒不是因为他对风十四娘一往情深,而是因为他的武功。源于两个情节,一个是他的一句话,大意是几十年来,少林功夫的早课晚课从不耽误;其二是他和萧十一郎的交手,萧很惊讶从前小看了这个人,因为“他从未见过这么扎实的武功”,虽然他心中有愧,没有就杨出第十七招时露出的三个破绽出手,但两百招以后杨的功夫完全展露出来了,已经打出了完美的境界。学分析类课程的感觉就和这段武功描写大概差不多。只要学扎实了,后来学经济学确实得心应手,可以“一次性”解决“不会证明”的问题(当然好处远不止与此)。
在看高微作业的时候,有些同学在抽象的证明题后面留了大片空白,有些证的不知所谓,可能就是因为抽象的数学训练不够;也有不少证明的很漂亮,我一年级的时候肯定没这水平,呵呵。
学分析的好处很多文章谈的很多了,还是那句话,5遍不算多,十遍也值得(“实变实变,不学十遍哪行?”嘿嘿),会大幅加快后面学习的进度,比如学概率论或者动态规划的时候,很多内容可以跳过去。
进入教材之前,还要遵守一下前言的思路,说说微积分的直观感觉。数学系的同学虽然直接上的数学分析,但一般数学系都会给本科生开大学物理,所以他们对微积分的直观感觉应该是不差的。普通学经济的同学我就不敢说了,反正我自己没感觉。后来补直觉的时候用的是Stewart <Calculus> (第五版),一千多页,在加两张光盘,跳过所有的练习不看,只看直观解释部分,然后对照光盘图文动画并茂,费了一阵功夫,总算知道了微积分那些概念能干嘛了,呵呵。
进入教材吧。
如果这两门课我选两本教材的话,我会选Apostol <Mathematical Analysis> (第二版)和 Aliprantis & Burkinshaw <Principles of Real Analysis>. 如果每门课两本的话,数学分析我会添上 Rudin < Principles of Mathematical Analysis>, 实分析的话,添Royden <Real Analysis> (第三版) 或者Rudin <Real and Complex Analysis>, 后者拿不准。因为如果我说靠自学就把这两本书的内容啃完了的话,那我是在YY,但是Aliprantis & Burkinshaw <Principles of Real Analysis>那个可以搞的差不多,配套的习题集和答案帮了不少忙。以前我以为是自己笨,但是浏览了一下Amazon对Royden那本书的评价,总算喘了口气,嘿嘿。
Apostol的书写得太漂亮了,直观,严格,证明漂亮,阅读时有一种快感难以言表,而且还有很多习题我居然也是可以自己做的不错滴,最后这条很让我兴奋。(我们的FTP上有前九章所有的习题答案)――当然,我也时不时摘几道吉米托维奇做做,而且经常会陷入幻想,自己有一天很牛叉的做完了所有的吉米,唉,估计也只能是幻想了。
Rudin的书个人特点显明,翻开书一看,就看见一个个黑体字――Theorem, Corollary, Proof…没有废话,怪不得机械工业出版社的影印版封底有这样一句话“与其说这是一部教科书,不如说这是一部字典。” 饶是如此,该书还是不可或缺,证明简单,漂亮,有力量!!!!!!此公写得三本分析皆为经典,上面提到了两本,还有一本<functional analysis>,这个偶就彻底看不懂咧。
实变函数可说的话不多,前面推荐的书都以自学为目的,实变如果也要自学的话,我觉得不太靠谱,推荐这本书是因为我学过一些实变,然后还学过一些简单的测度论,所以才堪堪把Aliprantis & Burkinshaw 搞的差不多。所以这部分内容还是推荐大家去听课吧。
PS:据说博弈论老牛Binmore 写过一本《Mathematical Analysis: A Straightforward Approach》很是精彩,可惜无缘拜读啊。此公在另外一本< Fun and Games: A Text on Game Theory>的前言中有一段话着实精彩,文采太好,不会翻译,所以直录如下作为本节结尾:
Much of what passes for an undergraduate education, both in the United States and in Europe, seems to me little more than an unwitting conspiracy between the teacher and the student to defraud whoever is paying fees. The teacher pretends to teach, and the student pretends to learn, material that both know in their hearts is so emasculated that it cannot be properly understood in the form in which it is presented. Even the weaker students grow tired of such a diet of predigested pap. They understand perfectly well that “appreciating the concepts” is getting them nowhere except nearer to a piece of paper that entitles them to write letters after their names. But most students want more than this. They want to learn things properly so that they are in a position to feel that they can defend what they have been taught without having to resort to the authority of their teachers or the textbooks. Of course, learning things properly can be hard work. But my experience is that students seldom protest at being worked hard provided that their program of study is organized so that they quickly see that their efforts are producing tangible dividends.
哈哈,learning things properly and making sense
三、线性代数
很长时间以来,线性代数的重要性被我忽略了,还沾沾自喜的认为自己学得不错。大学时候好像这门课最好学,考研时它也比微积分和概率简单,不就整整逆矩阵求求特征值么,好说好说。发现自己错的离谱是后来的事了。
也许线性代数的那些基本运算并不难,但其中蕴含的数学含义丰富,尤其是学到向量空间和线性变换之后,对理解很多经济学内容大有帮助,比如计量经济学的很多概念。我在数理经济学那部分中推荐Angel de la Fuente这本书的一个原因是这本书第三章整章都在讲些抽象概念,我从中学到了不少东西。
还是从直观开始吧,当初学完线代之后,我基本完全不知道这东西是干嘛用的。于是像补微积分的直观一样,去补习线代的直观含义和现实应用,看了一本Jain & Gunawardena 的 <Linear Algebra: An Interactive Approach>, 顾名思义,又是光盘和书的结合,动画应用图形一顿轰炸,明白了那些数学概念在现实中是怎么用的。这本书超简单,数学内容估计一两天就看完了,主要是看看以前不熟悉的各种矩阵分解,简单的谱,以及特征值问题中类似Cayley-Hamilton定理等。本书不涉及二次型和矩阵求导等一年级高级经济学课程急需用到的内容,所以只能用于回顾直觉,呵呵。
正式的教材推荐两本,简单全面且和经济学联系紧密的。Hadley <Linear Algebra> 和 Dhrymes <Mathematics for Econometricians> 。
Hadley的书非常经典,几何的直观讲的很好,内容比较全,值得系统的回顾一下。
Dhrymes的书大概100多页,全部由定理和证明堆成。作为前本书补充的内容大概有30多页吧,集中在各种伪逆矩阵,矩阵分解,矩阵向量化和求导。不过有个问题我一直不明白,本书讲了很多伪逆矩阵(广义逆矩阵),但之后我学了一年的高级计量,好像用到的地方少的可怜又可怜,不解。不过很有意思。
这两本书研院图书馆都有。
好像这些内容暂时就够用了,至于更抽象的诸如线性变换,同构(isomorphism),线性同胚(linear homeomorphism)等,简单的可以参考一下Angel de la Fuente的第三章,后来用到再仔细查(事实上我好像也没后来回来过,呵呵)。
再次强调一下线性代数的几何含义,学习计量经济学时候那些诸如投影矩阵的东东,都和这部分内容有关,懂了几何含义学起来会容易一些
四、概率
(一气码了6000字眼都花了,鼓起余勇再码一节)
概率和统计的重要性不用强调,不好好学压根就学不了经济学。
概率教材多如牛毛,有得偏统计(实际上每本统计都会先讲概率),有得偏随机过程(比如Grimmett & Stirzaker那著名的《Probability and Random Process》),所以还得分开谈。
先谈“纯概率论”,概率论的重要性不是会弄几个分布就搞得定的,顶顶重要的是对基本概念从直观到抽象的把握。(说这话有点底气不足,概率论那种随机的概念好像从来就没直观过,实际上往往和直观相悖,这点一会儿再谈)
这里的两本书出自同一人之手,那就是俺无比崇敬滴牛人钟开来(Kailai Chung)老师(此公彪悍的事迹一直是K斑竹最爱的话题之一,呵呵。哪天要求他就此开个转贴讨论一下);
《Elementary Probability Theory with Stochastic Process》和《A Course in Probability Theory》第二版,前一本书研究生院馆中英文都有,中文翻译的相当不错。后一本好像没有。
两本书都注重概率论的基本概念,前一本是初级读物,但是想读好了也不容易,原因不是数学的,那些数学大学学过了,可能原因还在于概率论的基本概念往往不那么直观,虽然这本书举了大量例子来讨论直观感觉。但是写得真好啊,真好啊,真好啊。好像读了不止一遍才舍得还回去,唉,好得我忍不住叹息一声。实在建议所有没读过的人读一遍。
这里插一句,图书馆还有本中文小册子叫《随机性》,属于科普读物一级,妙趣横生。里面有N多例子说明概率的推理和直观感觉不符,随机性真是神秘的东东啊。
第二本是“高等概率论”范围的“初级”读物,要求先修过一些实分析,要不没法看。一反第一本书里淳淳善导之文风,比古龙还简略,共九章,从测度论开始,花了一学期在一位牛人老师清晰无比的讲解下堪堪学完六章(没学567章),饶是如此还是云里雾里,做习题做的痛不欲生,唉。不过总算挺过来了,对进一步学习高等计量和数理统计帮助大的很。再多一句嘴,学测度论里“单调类定理”的证明时我有一种老俞看到维加斯“快速离婚通道”的感觉――留着口水惊叹:“太TM精妙了!”,唉,回忆起来都忍不住又叹一口气。
难道就没有“简单”的讲这些深奥概念的书?有,不过我觉得更难读,嘿嘿。总院馆有一本两个英国人写的书,忘了书名也懒得查,雄心勃勃想直观的尽量用文字讲解类似概率空间这种概念,淅沥哗啦花了将近三章密密麻麻文字的篇幅告诉你什么“可测”啊“不可测啊”,“幂集”啊,希格马代数是什么东东啊。。。当初一看之下如获至宝,以为我这笨人有救了,结果差点读死我,罗嗦无穷多次还是不明白,抽象就是抽象,还是学数学语言和证明懂得快。
当然有些书在这方面做的还不错,后面讲数理统计时会提到一本。
五、数理统计
(码字都码饿了,吃点东西接着来)
数理统计是什么东东?申请的时候老美一些网页上的解释让我恍然大悟,解释就是在“数理统计”后加个小括号,里面注明使用微积分的统计学才是serious的,哈哈。
社会科学的统计学毕竟不同于基于自然科学ceteris paribus传统的数理统计学,所以学数理统计之前了解一些统计学的基本概念十分必要,我个人一直对经济学很好的梳理数据工作十分赞赏,描述统计绝对是大学问!(有很多这种书,类似《统计学的世界》啊等等的,以前对统计学不了解的XDJM这些“粗浅”的东西一定要看的)。总院馆有本书,Aris Spanos <Probability Theory and Statistic Inference – Econometric Modeling with Observational Data>, 厚厚的一大本,从头到尾都在强调由于社会科学数据特殊性质而造成的分析方法差别,读下来获益匪浅。而且这本书在讲解类似“概率空间”这种抽象概念时做的很好,应该说非常好,当初没学老钟书之前我已经对这个概念的把握已经及格了,就是由于这本书。
扯远了,回来谈数理统计。
两本书,一本简单一本难一些。Hogg & Craig <Introduction to Mathematical Statistics>第五版; Casella & Berger <Statistical Inference>第二版. 前者是我本文里所有提到的书里唯一没学过的一本,因为当初看到它的时候我这部分内容已经读别的书学完了,推荐它是因为它风行世界,九章卖的影印本还很便宜,内容全面。
统计学的直观无比重要,什么随机抽样啊,大数定律和中心极限定理啊,各种检验怎么来的啊,自由度干嘛使的啊,各种分布的图形啊,甚至矩母函数能起什么作用啊等等,这些在第一本书里都有解答。此外,真正想直观把握的话必须亲自动手做一下看看效果,所以我强烈推荐FTP里那个“统计学基本概念教学互动软件”,能看到很多动画效果,绝对过目难忘!!
第二本书是真正非常serious的数理统计学教材,有了第一本中的知识做基础的话,读来会快一些,但也需要花很多很多时间去做推导。以前我的那篇《学习计量经济学:教材,手册,软件,数据》里反复强调了学习计量必须学会推导,如果这里你认真推了的话,计量会省下不少时间。本书还有一个特点就是“现代”,什么Bootstrap啊,MONTE CARLO啊,Robust回归啊等等统统登场,这些东西对于学习计量绝对少不了。学习本书时,如果你恰好还学过了老钟的那本高等概率的话,理解起大样本理论时会轻松很多。(突然想起了“淡收敛”这个概念,为啥没有“咸收敛”呢,hiahiahia)
出于个人偏好,最后再添一句关于Halbert White <Asymptotic Theory for Econometricians>,如果学Wooldridge <Econometric Analysis of Cross-sectional and Panel Data>的话,这本书是最好的预备读物,用到的推导思路乃至符号完全一致,不奇怪,Wooldrige是White的学生(White 是 Hausman的学生,坊间疯传著名的Hausman检验实际思路是White上研究生课时提出来的,不过当时white道行浅,有了思路不会证明,最后老Hausman回家就偷偷把它做出来了,哈哈,RPWT),两本书的前言里都互相提到了对方,嘿嘿。
好像就剩动态经济学了,哎呀,离完工不远了
六、动态经济方法
(最后一节咧,熬一下收工睡觉)
这部分内容很熟悉,按理说不难写,偏偏不知道从哪开始,想来想去决定先批两句蒋中一那本《动态最优化》基础,嘿嘿。说“批”也谈不上,书写得还是不错,不过没什么用处,看完了别说肯定不会用动态规划这一最重要的方法(因为压根书里就没说),连变分法能不能用我也抱疑问,而且书中用到的符号好像很奇怪,我比较傻,学过一种方法后如果将来遇见同样的问题但符号不一样的时候,往往就会产生没学过的错觉,搞得自己很沮丧,所以十分痛恨那些使用“奇怪”符号的作者,嘿嘿。
好像从学理上讲,要先说说微分方程和差分方程才能进入本节主题,学过前者,后者懂点皮毛,所以还是算了,前面露怯已经够多了。
两本书,一本简单一本难,内容也完全不同,前者是可微的动态优化方法,Kamien & Schwartz <Dynamic Optimization: the calculus of variations and optimal control in economics and management>(应该是第二版了吧),后者是离散情况下的动态规划方法,Stockey & LUCAS & Prescott <Recursive Methods in Economic Dynamics>。(突然想起了邹至庄教授的那次讲座上我和他的交流,显然他的Lagrange方法也应该有一席之地的,可惜我没学过,嘿嘿)。龚六堂老师那本《动态经济学方法》就是这两本书的完美“嫁接”版,哈哈。
第一本很好看,用不了多久自学也能看完,章节分得很多,经济学例子也不少(其实也不多,就是RAMSEY模型来回变)。但拿到模型会不会求解就不一定了,学动态经济学绝对是锻炼计算能力的极佳机会,知道基本方法用不了两小时,但用这方法求解模型就会往死里算了,唉,体力活,不好整。
另一本就不好看了,不过有基本的实分析知识和老钟那本高等概率做基础,数学部分学得很快(这本书绝大部分内容是数学,经济学例子也很多,但很短,大都当习题使唤了)。最后证明解存在性时使用的“压缩映射的不动点定理”实际十分简单(虽然预备知识学了半学期),在我看来证明微分方程解存在的那个毕卡定理的构造还要更精妙一些,嘿嘿。一样的道理,学会定理容易,不好算啊不好算。
至于随机动态部分就不是我能懂的了,ITO公式倒是会用,啥意思一点感觉没有,嘿嘿。
好像还缺点什么?对了,MATLAB,使用方法就是上网下载程序然后粘到程序窗口就OVER了,还是这个好学,哈。
|