楼主: xuruilong100
6561 6

[期权交易] 美式期权可能行权的概率如何计算??? [推广有奖]

已卖:804份资源

院士

4%

还不是VIP/贵宾

-

TA的文库  其他...

量化投资私家文库

文化与修养

计算与编程

威望
1
论坛币
4655 个
通用积分
109.2302
学术水平
186 点
热心指数
224 点
信用等级
164 点
经验
16554 点
帖子
1393
精华
0
在线时间
3780 小时
注册时间
2010-6-2
最后登录
2025-8-14

楼主
xuruilong100 发表于 2013-12-18 14:22:20 |AI写论文
10论坛币
在经典BS模型的框架下,美式看涨(跌)期权可能行权的概率如何计算?最好提供解析形式的解,尽量避免依赖MC和二叉树

最佳答案

Chemist_MZ 查看完整内容

This is a classic problem in American option. Some discussion can be found in Shreve's book Ch 8 (8.4.1) The problem can be summarized as find an exercise boundary, i.e. For example for a put option, we need to find a exercise boundary L(T-t), whenever the stock price S(t) falls bellow L(T-t), we should exercise. For your problem, it is the probability that lognormal distribution goes below L(T ...
关键词:美式期权 二叉树 如何

回帖推荐

Chemist_MZ 发表于2楼  查看完整内容

This is a classic problem in American option. Some discussion can be found in Shreve's book Ch 8 (8.4.1) The problem can be summarized as find an exercise boundary, i.e. For example for a put option, we need to find a exercise boundary L(T-t), whenever the stock price S(t) falls bellow L(T-t), we should exercise. For your problem, it is the probability that lognormal distribution goes below L(T ...

本帖被以下文库推荐

沙发
Chemist_MZ 在职认证  发表于 2013-12-18 14:22:21
This is a classic problem in American option. Some discussion can be found in Shreve's book Ch 8 (8.4.1)

The problem can be summarized as find an exercise boundary, i.e. For example for a put option, we need to find a exercise boundary L(T-t), whenever the stock price S(t) falls bellow L(T-t), we should exercise. For your problem, it is the probability that lognormal distribution goes below L(T-t).

This problem is a little hard because it needs simultaneously solve PDE with several boundary conditions. So the common practice is to use finite difference (I know you don't like :-( ) to numerically find the boundary. Than you can calculate the probability.

More details, see Shreve's book. I think this is a popular issue. There should be many research papers talking about how to get the exercise boundary more efficiently (perhaps some analytical solutions :-) ).

best,
已有 1 人评分经验 论坛币 学术水平 热心指数 信用等级 收起 理由
见路不走 + 5 + 5 + 1 + 1 + 1 精彩帖子

总评分: 经验 + 5  论坛币 + 5  学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

扫头像关注公众号“二点三西格玛”衍生品定价与风险管理

藤椅
yeting2000 在职认证  发表于 2013-12-18 14:28:25
看看

板凳
菜园老头 发表于 2013-12-18 14:33:51
问题不太专业,影响因素太多了,比如假设的标的资产的变化形式,是否是完全市场等等,你得具体问题具体分析

报纸
xuruilong100 发表于 2013-12-18 14:53:34
菜园老头 发表于 2013-12-18 14:33
问题不太专业,影响因素太多了,比如假设的标的资产的变化形式,是否是完全市场等等,你得具体问题具体分析
已经改正了,请不吝赐教

地板
xuruilong100 发表于 2013-12-19 17:50:52
Chemist_MZ 发表于 2013-12-18 23:35
This is a classic problem in American option. Some discussion can be found in Shreve's book Ch 8 (8. ...
在二叉树的框架下可以得到近似的最优执行边界,并且可以知道那些路径穿过了边界,执行概率也就算出来了。不过这种方法不够“高大上”。
在连续情境下,执行概率问题可以抽象为一个“首达时”问题,不过时变的边界条件比教科书上的反射原理复杂多了。可以推荐一些关于执行概率的论文吗?
执行概率对定价没太大帮助,但是对交易来说很有参考价值,特别是那些期望卖出裸期权的投机者。
把执行概率和期望收益结合起来编制一个效用函数

7
Chemist_MZ 在职认证  发表于 2013-12-19 22:13:23
xuruilong100 发表于 2013-12-19 17:50
在二叉树的框架下可以得到近似的最优执行边界,并且可以知道那些路径穿过了边界,执行概率也就算出来了。 ...
OK, I know you don't like binomial. But actually it is the most efficient one. And actuate enough.

PS: actually binomial modal catches the character of the the path dependent derivatives. I highly recommend it.

Stopping time can solve infinite maturity (perpetual) put. But not finite maturity (bad)

If you are just consider the trading issue, then numerical and approximation is ok (Including binomial and all kinds of ways, just google it).

This is a paper talking about something you may interested in (very attractive abstract :-)  ). You can take a look if you can drag it down.

http://www.tandfonline.com/doi/a ... 80600699811#preview

best,
扫头像关注公众号“二点三西格玛”衍生品定价与风险管理

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-31 10:55