楼主: hnfhx0227
14045 10

[问答] 怎么样分析岭回归的结果 [推广有奖]

  • 1关注
  • 2粉丝

已卖:303份资源

硕士生

56%

还不是VIP/贵宾

-

威望
0
论坛币
99 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
2308 点
帖子
69
精华
0
在线时间
157 小时
注册时间
2007-4-9
最后登录
2019-10-21

楼主
hnfhx0227 发表于 2008-1-15 13:49:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

我在SPSS里输入

include 'D:\Program Files\SPSS Evaluation\ridge regression.sps'.
ridgereg dep=nonind /enter=hs300 shf.

输出          R-SQUARE AND BETA COEFFICIENTS FOR ESTIMATED VALUES OF K

  K        RSQ       hs300        shf                                                            hs300和shf是两个变量
______    ______    ________    ________

.00000    .93585     .980841     .108067
.05000    .93350     .931840     .094583
.10000    .92737     .887618     .083101
.15000    .91852     .847497     .073255
.20000    .90773     .810919     .064756
.25000    .89559     .777428     .057379
.30000    .88252     .746642     .050941
.35000    .86884     .718241     .045295
.40000    .85480     .691955     .040323
.45000    .84057     .667553     .035926
.50000    .82630     .644836     .032022
.55000    .81208     .623634     .028545
.60000    .79799     .603799     .025438
.65000    .78410     .585200     .022654
.70000    .77044     .567725     .020151
.75000    .75703     .551274     .017895
.80000    .74392     .535759     .015858
.85000    .73110     .521101     .014014
.90000    .71858     .507230     .012341
.95000    .70638     .494085     .010820
1.0000    .69449     .481609     .009435

 还有两个图,RIDGE TRACE和R-SQUARE VS.K

RIDGE TRACE里有两条都是向右下斜的光滑曲线,向下凸

R-SQUARE VS.K基本上是向下倾斜的直线.

这样应该怎么分析啊?

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:岭回归 怎么样 coefficients coefficient Evaluation 结果

回帖推荐

hanszhu 发表于2楼  查看完整内容

Ridge Regression On SPSSThe Multicollinearity Situation Needed Syntax Files The Steps to Ridge Regression The Output Interpretation In situations of high multicollinearity (as evidenced by large VIFs), several alternative non-OLS (Ordinary Least Squares) prediction techniques may be attempted to avoid the resulting large sampling variances of the ßs.  Ridge regressio ...

saigu 发表于9楼  查看完整内容

SPSS能进行岭回归吗? 答:SPSS可以实现岭回归分析。岭回归分析是一种有偏的回归分析方法,它是为了解决多重共线性的问题而提出来的方法。在17.0之前SPSS的岭回归没有对话框界面,而是通过名为“Ridge Regression.sps”的宏程序来实现的,该宏程序初始保存在spss的安装路径中,通过SPSS Syntax语法调用该宏程序(INCLUDE)可以实现岭回归的功能。 在17.0之后,SPSS增强了最优尺度回归(即分类回归)的功能,在其中包含了岭回归的 ...

本帖被以下文库推荐

沙发
hanszhu 发表于 2008-2-13 06:39:00

Ridge Regression On SPSS

In situations of high multicollinearity (as evidenced by large VIFs), several alternative non-OLS (Ordinary Least Squares) prediction techniques may be attempted to avoid the resulting large sampling variances of the ßs.  Ridge regression is one technique  proposed in such a situation.  These are the instructions for accomplishing at least a basic ridge regression in SPSS.

You must do Ridge Regression in SPSS using syntax.  SPSS provides a canned syntax file (Ridge_regression.sps) used for accomplishing Ridge Regression on generic data sets.  On individual PC installations, it is copied to the SPSS directory, but in a network installation, as in our computer labs, the file can be difficult to find.  You must create (or edit from the example included here) another syntax file that gives specific information about your data set (I have called this file mrdemo_Ridge.sps).  This file (mrdemo_Ridge.sps) acts as an "interface" between your data set and the generic SPSS Ridge Regression syntax file; it calls the SPSS file with information specific to your data file.

Thus, you need three files, the two syntax files necessary are:

    Ridge_regression.sps, and 

    mrdemo_Ridge.sps

    You also need a data file amenable to a ordinary regression analysis.  For this example, we will use the data file that was used in the Regression lab (MRDEMO.sav).

Though the location and association of these files can be set up in a variety of ways, we will put all of these files in the SAME DIRECTORY.  So your first task is to copy the two "sps" files (note that this is the suffix used by SPSS for syntax files) to a directory.  These are available in this Ridge Regression folder (these instructions are in that folder).  Next, copy your regression data file (we will use MRDEMO.sav here) to the same directory.

The steps to accomplish the Ridge Regression are:

    1.  Open the data file (mrdemo.sav) using SPSS,

    2.  Open (double-click) the syntax file with information about the data set (mrdemo_Ridge.sps),

    3.  Modify mrdemo_Ridge.sps to fit your data,

    4.  In the syntax window, click Run/All -- your output should follow.

Step # 3 deserves some elaboration.  The mrdemo_Ridge.sps file is:

    INCLUDE 'Ridge regression.sps'.
    RIDGEREG DEP=gpa /ENTER = greq to ar
    /START=0 /STOP=1 /INC=0.05.

You need to change those parts that I have highlighted in RED. Thus, simply change "gpa" to your dependent variable name and "greq to ar" to a list of  your predictors (the "to" convention can be used or you may simply list all of the names).

The output (below) shows both the change in the ßs (the Ridge "trace") and the change in the R2s as a function of increasing "k," starting with a k of zero (ordinary least squares solution), up to a k of 1.0 in increments of .05. (The starting, stopping, and increment value are changeable in mrdemo_Ridge.sps.)

 R-SQUARE AND BETA COEFFICIENTS FOR ESTIMATED VALUES OF K K RSQ GREQ GREV MAT AR ______ ______ ________ ________ ________ ________ .00000 .64037 .323476 .211237 .321946 .202255 .05000 .63999 .309608 .211463 .308098 .206151 .10000 .63896 .297807 .210701 .296307 .208121 .15000 .63742 .287519 .209291 .286023 .208795 .20000 .63547 .278380 .207446 .276887 .208572 .25000 .63317 .270147 .205308 .268654 .207716 .30000 .63057 .262644 .202974 .261153 .206408 .35000 .62771 .255744 .200511 .254254 .204773 .40000 .62464 .249352 .197967 .247865 .202905 .45000 .62137 .243394 .195379 .241909 .200869 .50000 .61794 .237812 .192770 .236331 .198715 .55000 .61437 .232560 .190161 .231084 .196481 .60000 .61068 .227601 .187565 .226130 .194194 .65000 .60688 .222902 .184992 .221437 .191876 .70000 .60301 .218438 .182450 .216980 .189545 .75000 .59906 .214188 .179945 .212737 .187213 .80000 .59505 .210131 .177480 .208689 .184890 .85000 .59099 .206253 .175059 .204819 .182583 .90000 .58690 .202538 .172683 .201113 .180299 .95000 .58278 .198975 .170355 .197559 .178042 1.0000 .57864 .195553 .168073 .194146 .175816 

Interpretation
The idea in ridge regression, at least as originally proposed by Hoerl and Kennard, is one of compromise; we find a small constant, k, that increases the stability (an equivalent way of looking at this is to decrease the weights' variability, which you can see from the Ridge Trace, occurs) of the weights appreciably while not decreasing the R2 by too much. Hoerl and Kennard proposed a "Ridge Trace" in which the ßs are plotted as a function of k. The notion was that we could look at the plot and make some decision about a k that seemed reasonable. At the same time as the ßs are "calming down," however, the R2 is necessarily decreasing (as the OLS ßs guarantee us the maximum R2). So SPSS produces both the Ridge Trace and a plot of  R2 as a function of k. There are more advanced ways of looking at this, but this is the basic and original method. The truth is that the data set herein really didn't need ridge regression in the first place as the VIFs were all below 2.0 so we see no drastic improvement in the variance of the ßs with little loss in R2. If pressed we might use 1/F (where F is the F-ratio for the OLS regression), which has been suggested as an analytic method of obtaining k. In the case of these data, this would be k = 1/11.129 or k ≈ .1. Looking at the values calculated for us by SPSS, using this k does little damage to the R2 (reduction of only  about .00141), and might be argued to provide some stability to the ßs. For your data set, the situation may be different.
 

已有 1 人评分经验 论坛币 收起 理由
bakoll + 3 + 10 精彩帖子

总评分: 经验 + 3  论坛币 + 10   查看全部评分

藤椅
doctor1985 发表于 2009-12-4 13:25:54
回归——》最优尺度——》规则化里面有岭回归的,不用那么麻烦了spss18里面已经比较完善了

板凳
lilua 发表于 2009-12-4 15:43:51
旁听学习一下.

报纸
xinyuanyima 发表于 2010-1-9 14:38:32
也想问岭回归常数怎么求?
你二或不二,二就在那里,不三不四。

地板
罗马俱乐部 发表于 2010-3-19 23:57:28
也想问岭回归常数怎么求?
本文来自: 人大经济论坛 详细出处参考:http://www.pinggu.org/bbs/viewth ... &from^^uid=938434

7
苗苗yeah 发表于 2010-5-16 13:35:41
万分感谢~~~ 3# doctor1985

8
diena 发表于 2012-1-11 18:27:36
学习一下,要有中文的解答就更好了

9
saigu 发表于 2013-5-13 00:33:46
SPSS能进行岭回归吗?
答:SPSS可以实现岭回归分析。岭回归分析是一种有偏的回归分析方法,它是为了解决多重共线性的问题而提出来的方法。在17.0之前SPSS的岭回归没有对话框界面,而是通过名为“Ridge Regression.sps”的宏程序来实现的,该宏程序初始保存在spss的安装路径中,通过SPSS Syntax语法调用该宏程序(INCLUDE)可以实现岭回归的功能。
在17.0之后,SPSS增强了最优尺度回归(即分类回归)的功能,在其中包含了岭回归的内容。通过对最优尺度回归中的规则化方法进行设置,并选择岭回归的参数,就可以实现岭回归的功能。
已有 1 人评分论坛币 收起 理由
bakoll + 10 精彩帖子

总评分: 论坛币 + 10   查看全部评分

10
bugbugbu 在职认证  发表于 2014-10-25 16:56:09
doctor1985 发表于 2009-12-4 13:25
回归——》最优尺度——》规则化里面有岭回归的,不用那么麻烦了spss18里面已经比较完善了
岭回归算法在最优尺度回归中的联合应用,不是单纯的岭回归啊

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-29 08:44