楼主: martinnyj
1290 3

免費 Lectures on Financial Mathematics - Harald Lang [推广有奖]

  • 0关注
  • 58粉丝

已卖:36255份资源

学科带头人

44%

还不是VIP/贵宾

-

威望
0
论坛币
213097 个
通用积分
117.7665
学术水平
183 点
热心指数
227 点
信用等级
154 点
经验
51222 点
帖子
868
精华
0
在线时间
1598 小时
注册时间
2007-6-14
最后登录
2025-10-27

楼主
martinnyj 发表于 2014-3-16 23:23:48 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Lectures on Financial Mathematics - Harald Lang.pdf (7.04 MB)

Lectures on Financial Mathematics

Harald Lang

Preface

My main goal with this text is to present the mathematical modelling of financial markets in a mathematically rigorous way, yet avoiding mathematical technicalities that tends to deter people from trying to access it.


Trade takes place in discrete time; the continuous case is considered as the limiting case when the length of the time intervals tend to zero.  However, the dynamics of asset values are modelled in continuous time as

in the usual Black-Scholes model. This avoids some mathematical technicalities that seem irrelevant to the reality we are modelling.  


The text focuses on the price dynamics of forward (or futures) prices rather than spot prices, which is more traditional. The rationale for this is that forward and futures prices for any good—also consumption goods—exhibit a Martingale property on an arbitrage free market, whereas this is not true in general for spot prices (other than for pure investment assets.)  It also simplifies computations when derivatives on investment assets that pay dividends are studied.  


Another departure from more traditional texts is that I avoid the notion of “objective” probabilities or probability distributions. I think they are suspect constructs in this context. We can in a meaningful way assign probabilities to outcomes of experiments that can be repeated under similar circumstances, or where there are strong symmetries between possible

outcomes. But it is unclear to me what the “objective” probability distribution for the price of crude oil, say, at some future point in time would be. In fact, I don’t think this is a well defined concept.


The text presents the mathematical modelling of financial markets. In order to get familiar with the workings of these markets in practice, the reader is encouraged to supplement this text with some text on financial

economics. A good such text book is John C. Hull’s: Options, Futures, & Other Derivatives (Prentice Hall,) which I will refer to in some places.

Contents

I: Introduction to Present-, Forward- and Futures Prices . . . 1

Zero Coupon Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Money Market Account . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Relations between Present-, Forward- and Futures Prices . . . . . 3

Comparison of Forward- and Futures Prices . . . . . . . . . . . . . 4

Spot Prices, Storage Cost and Dividends . . . . . . . . . . . . . . . 6

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II: Forwards, FRA:s and Swaps . . . . . . . . . . . . . . . . . . . 8

Forward Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Forward Rate Agreements . . . . . . . . . . . . . . . . . . . . . . . . 10

Plain Vanilla Interest Rate Swap . . . . . . . . . . . . . . . . . . . . 11

Exercises and Examples . . . . . . . . . . . . . . . . . . . . . . . . . 12

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

III: Optimal Hedge Ratio . . . . . . . . . . . . . . . . . . . . . . 17

Exercises and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

IV: Conditions for No Arbitrage . . . . . . . . . . . . . . . . . 21

Theorem (The No Arbitrage Theorem) . . . . . . . . . . . . . . . . 22

The No Arbitrage Assumption . . . . . . . . . . . . . . . . . . . . . . 23

V: Pricing European Derivatives . . . . . . . . . . . . . . . . . 25

Black’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The Black-Scholes Pricing Formula . . . . . . . . . . . . . . . . . . . 26

Put and Call Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The Interpretation of ¾ and the Market Price of Risk . . . . . . . 26

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Exercises and Examples . . . . . . . . . . . . . . . . . . . . . . . . . 28

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

VI: Yield and Duration . . . . . . . . . . . . . . . . . . . . . . . 32

Forward Yield and Forward Duration . . . . . . . . . . . . . . . . . 34

Black’s Model for Bond Options . . . . . . . . . . . . . . . . . . . . 36

Portfolio Immunising . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Exercises and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

VII: Risk Adjusted Probability Distributions . . . . . . . . . 42

An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Forward Distributions for Different Maturities . . . . . . . . . . . . 44

Exercises and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

VIII: Conditional Expectations and Martingales . . . . . . . 48

Martingale Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

IX: Asset Price Dynamics and Binomial Trees . . . . . . . . . 51

Black-Scholes Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Binomial Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 51

The Binomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Pricing an American Futures Option . . . . . . . . . . . . . . . . . . 53

American Call Option on a Share of a Stock . . . . . . . . . . . . . 54

Options on Assets Paying Dividends . . . . . . . . . . . . . . . . . . 54

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Exercises and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

X: Random Interest Rates: The Futures Distribution . . . . 66

XI: A Model of the Short Interest Rate: Ho-Lee . . . . . . . 69

The Price of a Zero Coupon Bond . . . . . . . . . . . . . . . . . . . 70

Forward and Futures on a Zero Coupon Bond . . . . . . . . . . . . 71

The Forward Distribution . . . . . . . . . . . . . . . . . . . . . . . . 71

Pricing a European Option on a Zero Coupon Bond . . . . . . . . 72

XII: Ho-Lee’s Binomial Interest Rate Model . . . . . . . . . . 73

Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Exercises and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:mathematics Mathematic financial Thematic inancial continuous present access people trying

沙发
micro 发表于 2014-3-17 07:46:06 来自手机
谢谢

藤椅
fin9845cl 发表于 2014-3-18 13:04:45
下载学习
谢谢楼主的分享

板凳
fbfidwsa 发表于 2014-3-23 16:55:49
thank you very much!!!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-2 06:22