楼主: 410234198
3272 7

[数据挖掘书籍] Practical Machine Learning Innovations in Recommendation[搬运] [推广有奖]

  • 0关注
  • 3粉丝

已卖:4975份资源

博士生

51%

还不是VIP/贵宾

-

威望
0
论坛币
5585 个
通用积分
35.0446
学术水平
24 点
热心指数
52 点
信用等级
18 点
经验
14802 点
帖子
264
精华
0
在线时间
292 小时
注册时间
2011-7-13
最后登录
2025-6-28

楼主
410234198 发表于 2014-8-6 09:54:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
cat.gif
by:Ted Dunning, Ellen Friedman
http://www.oreilly.com/data/free/machinelearning.csp?intcmp=il-strata-free-product-lgen_machinelearning
  • Print Length: 53 pages
  • It`s a short e-book.

Building a simple but powerful recommendation system is much easier than you think. This report explains innovations that make machine learning practical for business production settings—and demonstrates how even a small-scale development team can design an effective large-scale recommender. The style of the report makes this subject approachable for all levels of expertise.

Authors Ted Dunning and Ellen Friedman walk you through a design that relies on "careful simplification." You’ll learn how to collect the right data, analyze it with an algorithm from the Apache Mahout library, and then easily deploy the recommender using search technology with Apache Solr. This powerful and effective combination is efficient: it does learning offline and delivers rapid response recommendations in real time.

  • Understand the tradeoffs between simple and complex recommenders
  • Collect user data that tracks user actions—rather than their ratings
  • Predict what a user wants based on behavior by others, using Mahout for co-occurrence analysis
  • Use Solr to offer recommendations in real time, complete with item metadata
  • Watch the recommender in action with a music service example
  • Improve your recommender with dithering, multimodal recommendation, and other techniques
contents:

1. Practical Machine Learning
  What’s a Person To Do?
  Making Recommendation Approachable
2. Careful Simplification
  Behavior, Co-occurrence, and Text Retrieval
  Design of a Simple Recommender
3. What I Do, Not What I Say
  Collecting Input Data
4. Co-occurrence and Recommendation
  How Apache Mahout Builds a Model 16
  Relevance Score
5. Deploy the Recommender
  What Is Apache Solr/Lucene?
  Why Use Apache Solr/Lucene to Deploy?
  What’s the Connection Between Solr and Co-occurrence Indicators?
  How the Recommender Works
  Two-Part Design
6. Example: Music Recommender
  Business Goal of the Music Machine
  Data Sources
  Recommendations at Scale
  A Peek Inside the Engine
  Using Search to Make the Recommendations
7. Making It Better
  Dithering
  Anti-flood
  When More Is More: Multimodal and Cross Recommendation
8. Lessons Learned
A. Additional Resources

Practical Machine Learning Innovations in Recommendation.pdf (7.98 MB, 需要: 1 个论坛币)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Innovations Innovation Recommend Practical Learning effective practical learning business settings

本帖被以下文库推荐

沙发
hsiaoyan(真实交易用户) 发表于 2014-8-6 13:00:42
謝謝分享!!

藤椅
xiaobimeng(真实交易用户) 发表于 2014-11-20 09:37:47
感谢楼主分享这么好的书,浅显易懂,赞!!!

板凳
idq777(真实交易用户) 发表于 2016-9-20 17:26:43
謝謝分享!!

报纸
franky_sas(未真实交易用户) 发表于 2016-10-11 14:02:44

地板
爱萌(真实交易用户) 发表于 2016-10-14 09:49:28
很好的书,多谢

7
tbfly(未真实交易用户) 发表于 2017-5-2 17:50:35
很短的书哦 不错的

8
acedownload(真实交易用户) 发表于 2017-9-19 22:20:26
谢谢楼主分享!!!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-2-10 15:16