楼主: lemononeplus
2520 1

[学习资料] [推荐]Richard Williams的online统计课程 [推广有奖]

  • 0关注
  • 2粉丝

已卖:43份资源

博士生

34%

还不是VIP/贵宾

-

威望
0
论坛币
7554 个
通用积分
0.9401
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
2291 点
帖子
457
精华
0
在线时间
24 小时
注册时间
2008-4-1
最后登录
2015-10-30

楼主
lemononeplus 发表于 2008-7-10 12:43:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Richard Williams,is an Associate Professor of the Department of Sociology at the University of Notre Dame, teaching Methods and Statistics, Demography, and Urban Sociology.

homepage:http://www.nd.edu/~rwilliam/ 

有以下教程链接(包括,pdf教程,spss和stata的例子)

Graduate Statistics I

入门级课程,介绍最基础的统计描述量,统计描述方法,假设检验,和OLS回归的基本知识

PART I: Descriptive statistics, probability, distributions, confidence intervals, intro to hypothesis testing.

PART II: Hypothesis testing.

PART III: Bivariate and multivariate regression

Graduate Statistics II

进阶教程,包括OLS回归问题和对策,如何选择合适的model,以及path analysis techniques

PART I:
   In this section, we briefly review the basics of OLS regression. We talk about some of the most common issues (measurement error, missing data, violations of OLS assumptions) encountered in regression analysis.

基础OLS regression

有违OLS regression假设时的问题及对策:multicollinearity(多重共线性)问题、detecting及对策,missing data问题及对策,measurement error,简单的scale construction,outliers(极值)处理,Heteroskedasticity(异方差)问题、detecting及对策,基本的serial correlation(序列自相关)处理

PART II:
  
This section shows how regression can be used to properly specify a causal model. We begin by introducing "the logic of causal order," which lets us understand the different kinds of causal relationships that might be present between variables. Common model mis-specifications are then addressed (e.g. omitted variables, extraneous variables, variables with nonlinear effects). We discuss how to choose between alternative causal models. Finally, we introduce path analysis as a method for causal modeling.

因果逻辑关系分析

多因素统计分析:suppressor effects(制约效应???),interaction effects(交互作用);specification error;imposing and testing equality constraints in Models

组间比较方法和模型

path analysis(路径分析??)介绍

PART III:
   Here, we develop path analysis techniques more fully. We talk about more complicated models that cannot be accurately estimated through conventional OLS regression techniques (e.g. nonrecursive models). We also talk about situations where the nature of the data make OLS regression inappropriate (e.g. dichotomous dependent variables) or less than optimal.

R square,计算及其问题详解

standardization的问题,和recursive model

更复杂的回归模型:Logistic regression;Logit model;Manova 和 LISREL的简介

Categorical Data Analysis

categorical data(分类数据?)分析方法和应用,解释有关非连续变量的统计方法

Overview.
   
 
This course discusses methods and models for the analysis of categorical dependent variables and their applications in social science research. Researchers are often interested in the determinants of categorical outcomes. For example, such outcomes might be binary (lives/dies), ordinal (very likely/ somewhat likely/ not likely), nominal (taking the bus, car, or train to work) or count (the number of times something has happened, such as the number of articles written). When dependent variables are categorical rather than continuous, conventional OLS regression techniques are not appropriate. This course therefore discusses the wide array of methods that are available for examining categorical outcomes.

Contents:

Overview of Generalized Linear Models, Maximum Likelihood Estimation

Brief Review of Models for Continuous Outcomes

Models for Binomial Outcomes

Models for Ordinal Outcomes

Models for Group Comparisons; Heterogeneous Choice Models

Categorical Data Analysis with Complicated Survey Designs   

Models for Multinomial Outcomes

Models for Count Outcomes

[此贴子已经被作者于2008-7-10 13:19:08编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Williams Richard William ONLINE nline 统计 课程 ONLINE Richard Williams

沙发
pussycat 发表于 2008-10-24 01:46:00

不错,好东西。多谢lz分享

总是要等到毕业前才知道该发的论文还没有写

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-25 00:23