ISSN 1431-875X ISSN 2197-4136 (electronic)
ISBN 978-1-4614-8787-6 ISBN 978-1-4614-8788-3 (eBook)
DOI 10.1007/978-1-4614-8788-3
Springer New York Heidelberg Dordrecht London
Library of Congress Control Number: 2013951152
© Springer Science+Business Media New York 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable
to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors
or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.
Contents
Part I DATA EXPLORATION, ESTIMATION
AND SIMULATION 1
1 UNIVARIATE DATA DISTRIBUTIONS 3
1.1 Probability Distributions and Their Parameters . . . . . . . . . . . . . . . . . . 3
1.2 Observations and Nonparametric Density Estimation . . . . . . . . . . . . . 31
1.3 Monte Carlo Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2 HEAVY TAIL DISTRIBUTIONS 69
2.2 GEV & GPD Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.3 Semi Parametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3 DEPENDENCE & MULTIVARIATE DATA EXPLORATION 121
3.1 Multivariate Data and First Measure of Dependence . . . . . . . . . . . . . 121
3.2 The Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.3 Marginals and More Measures of Dependence . . . . . . . . . . . . . . . . . . 135
3.4 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.5 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Part II REGRESSION 197
4 PARAMETRIC REGRESSION 199
4.1 Simple Linear Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
4.1.6 Regression as a Minimization Problem . . . . . . . . . . . . . . . . . . 209
4.2 Regression for Prediction & Sensitivities . . . . . . . . . . . . . . . . . . . . . . . 211
4.3 Smoothing Versus Distribution Theory . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.4 Multiple Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4.5 Matrix Formulation and Linear Models . . . . . . . . . . . . . . . . . . . . . . . . 228
4.6 Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
4.7 Nonlinear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
4.8 Term Structure of Interest Rates: A Crash Course . . . . . . . . . . . . . . . . 252
4.9 Parametric Yield Curve Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5 LOCAL AND NONPARAMETRIC REGRESSION 277
5.1 Review of the Regression Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
5.2 Basis Expansion Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
5.3 Nonparametric Scatterplot Smoothers. . . . . . . . . . . . . . . . . . . . . . . . . . 283
5.4 More Yield Curve Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
5.5 Multivariate Kernel Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
5.6 Projection Pursuit Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
5.7 Nonparametric Option Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Part III TIME SERIES & STATE SPACE MODELS 343
6 TIME SERIES MODELS: AR, MA, ARMA, & ALL THAT 345
6.1 Notation and First Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
6.2 Time Dependent Statistics and Stationarity . . . . . . . . . . . . . . . . . . . . . 355
6.3 First Examples of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
6.5 Putting a Price on Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
7 MULTIVARIATE TIME SERIES, LINEAR SYSTEMSAND KALMAN FILTERING 423
7.1 Multivariate Time Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
7.2 State Space Models: Mathematical Set Up . . . . . . . . . . . . . . . . . . . . . . 435
7.3 Factor Models as Hidden Markov Processes . . . . . . . . . . . . . . . . . . . . 437
7.4 Kalman Filtering of Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
7.5 Applications to Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
7.6 State Space Representation of Time Series. . . . . . . . . . . . . . . . . . . . . . 453
7.7 Example: Prediction of Quarterly Earnings . . . . . . . . . . . . . . . . . . . . . 457
8 NONLINEAR TIME SERIES: MODELS AND SIMULATION 473
8.2 More Nonlinear Models: ARCH, GARCH & All That . . . . . . . . . . . . 478
8.3 Stochastic Volatility Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
8.4 Discretization of Stochastic Differential Equations . . . . . . . . . . . . . . . 500
8.5 Random Simulation and Scenario Generation . . . . . . . . . . . . . . . . . . . 505
9 APPENDICES 537
References 559
Notation Index 565
Data Set Index 569
R Index 571
Author Index 575
Subject Index 579


雷达卡





京公网安备 11010802022788号







